
Subject: Re: Matrix algebra and index order, A # B vs A ## B
Posted by Craig Markwardt on Tue, 27 Mar 2012 13:11:17 GMT
View Forum Message <> Reply to Message

On Tuesday, March 27, 2012 3:45:40 AM UTC-4, Mats Löfdahl wrote:
> Den tisdagen den 27:e mars 2012 kl. 00:41:18 UTC+2 skrev Craig Markwardt:
>> On Monday, March 26, 2012 9:45:51 AM UTC-4, Mats Löfdahl wrote:
>>> On Monday, March 26, 2012 3:00:05 PM UTC+2, David Fanning wrote:
>>>> Mats Löfdahl writes:
>>>>
>>>> > IDL has two operators for matrix multiplication, # and ##.
>>>> > The former assumes the matrices involved have colum number as
>>>> > the first index and row number as the second, i.e., A_{rc} =
>>>> > A[c,r] with mathematics on the LHS and IDL on the RHS. The
>>>> > latter operator makes the opposite assumption, A_{rc} = A[r,c].
>>>> >
>>>> > I believe much headache can be avoided if one chooses one
>>>> > notation and sticks with it. If it were only me, I'd choose
>>>> > the A_{rc} = A[r,c] notation. But it isn't only me, because
>>>> > I like to take advantage of IDL routines written by others.
>>>> > So, has there emerged some kind of consensus among influential
>>>> > IDL programmers (those that write publicly available
>>>> > routines that are widely used - thank you BTW!) for
>>>> > which convention to use?
>>>>
>>>> Yes, the consensus that has emerged is that no operation
>>>> is more fraught with ambiguity, anguish, and frustration
>>>> than trying to translate a section of linear algebra code
>>>> from a paper or textbook (say on Principle Components
>>>> Analysis) to IDL than almost anything you can imagine!
>>>> It's like practicing backwards writing in the mirror.
>>>>
>>>> And, of course, while you are doing it you have the
>>>> growing realization that there is no freaking way you
>>>> are EVER going to be able to write the on-line
>>>> documentation to explain this dog's dish of a program
>>>> to anyone else. :-(
>>>>
>>>> The solution, of course, is to stick with the ##
>>>> notation for as long as it makes sense, then throw
>>>> in a couple of # signs whenever needed to make the
>>>> math come out right. :-)
>>>
>>> It's that bad? :o)
>>>
>>> One thing that had me wondering is the documentation for Craig Markwardt's qrfac routine:
>>>
>>>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33771&goto=79725#msg_79725
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79725
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> ; Given an MxN matrix A (M>N), the procedure QRFAC computes the QR
>>> ; decomposition (factorization) of A. This factorization is useful
>>> ; in least squares applications solving the equation, A # x = B.
>>> ; Together with the procedure QRSOLV, this equation can be solved in
>>> ; a least squares sense.
>>> ;
>>> ; The QR factorization produces two matrices, Q and R, such that
>>> ;
>>> ; A = Q ## R
>>> ;
>>> ; where Q is orthogonal such that TRANSPOSE(Q)##Q equals the identity
>>> ; matrix, and R is upper triangular.
>>>
>>> The ## operator for the matrix-matrix multiplications but # for matrix-vector multiplication! But
then I thought this might be IDL 1D arrays being interpreted as row vectors so x # A is actually just
another way of writing A ## transpose(x). And the former would be more efficient. Am I on the
right track here...?
>>
>> I believe I double checked the notation of QRFAC when I wrote it way back when.
>>
>> Maybe you need to read this part of the documentation as well....
>>
>> ; Note that the dimensions of A in this routine are the
>> ; *TRANSPOSE* of the conventional appearance in the least
>> ; squares matrix equation.
>
> Yes, but that doesn't help much when "the conventional appearance" is not defined...
>
>> The transposed matrix means you flip all the #'s: # <--> ##.
>>
>> I realize this is very confusing, but unfortunately I inherited this code from somewhere else
(MPFIT), so it retains the warts of the original.
>>
>> By the way, there's an example provided with the documentation, which you could test the
notation for yourself.
>
> Yes, of course. Sorry, I realize I gave the impression that I had problems running the qrfac
program. I don't, trial and error solved that problem. But it got me thinking about it and I thought it
might be nice to find out the most common convention and then perhaps stay sane by writing
wrappers around routines that use the opposite convention (if I stumble upon any). At least when
that can be done without much time penalty.
>
> Anyway, if my notation on the math side is right I believe qrfac uses the A[r,c] notation. So
that's one data point in favor of the ## operator. But the comment about "the conventional
appearance" is then a data point against?

The statement in the QRFAC documentation is not about array multiplication notation, it's about
the typical dimensions of the "A" matrix.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Normally in QR factorization, an "A" matrix is tall and thin. Something like DBLARR(N,M) where
M > N.

QRFAC accepts the transpose of this matrix, i.e. short and fat. DBLARR(M,N)

My understanding is that
 ## - is what you should always use for standard matrix multiplication (array-array or array-vector)
 # - is what you should use when ## doesn't work right.

Craig

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

