
Subject: Re: Regrid / Interpolation Question
Posted by Sean[1] on Mon, 26 Mar 2012 18:32:00 GMT
View Forum Message <> Reply to Message

As a follow up on this, I wrote a program to do the re-grid/interpolation that does not involve loops
(see example in previous post, or in program header).

I would really appreciate any feedback on this, especially if anyone thinks there is a faster way to
do what I've done here. I have some huge arrays I'm working with, so making this is as fast as
possible is important to me!

Thanks,
Sean

function regrid2D, vin, yin, yout

 ;Purpose:
 ;
 ; Re-grid a 2-D array (vin) to the output grid (yout) using the array yin.
 ; This program assumes that yin is the same size as vin, and that the values of yin are ordered
along each row
 ;
 ; The interpolating
 ;
 ;Inputs:
 ; vin - 2D array (nx,ny) of values to re-grid
 ; yin - 2D array (nx,ny) of ordered values corresponding to elements of vin. Values must be
ordered along the x-dimension
 ; yout - 1D array (nz) of output values used to re-grid vin
 ;
 ;Return value:
 ; vout - A 2D array (nz, ny) of values
 ;
 ;Example:
 ;
 ; Lets say I have 3 temperature vs. height profiles. Each profile has 6 points in the vertical, so the
arrays are (6,3).
 ;
 ; IDL> temp = [[270, 224.3, 200., 190., 210, 230.], [284,231, 206.5,
208,200.,190.],[300,280,230,220.,185.,200.]]
 ; IDL> height=[[0.5,1,2.3,2.7,3.2,4], [0.,1.3,3.4,3.6,3.8,5.3], [1.,1.2,2.7,3.6,4.4,6]]
 ;
 ; I want to interpolate to interpolate the temperature to 2 new heights:
 ;
 ; IDL> heightout = [1.5, 4]
 ;
 ; So I call regrid2d

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5478
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33780&goto=79742#msg_79742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;
 ; IDL> newtemp = regrid2d(temp, height, heightout)
 ;

 szv = SIZE(vin)
 IF szv[0] NE 2 THEN BEGIN
 print, 'Vin must be a 2D array!'
 return, -1
 ENDIF
 nx = szv[1]
 ny = szv[2]

 nz = n_elements(yout)

 miny=min(yin, max=maxy)
 yinsc = (double(yin)-miny)/(maxy-miny) ;scale yin to the range 0-1, and make
double

 minxvy = min(yinsc,dim=1,max=maxxvy) ;Store the min/max of each row, to be
used in preventing extrapolation (see below)

 yinsc = yinsc + REBIN(REFORM(DINDGEN(ny),1,ny), nx, ny) ;Add the row number so that
each row is higher than the previous. E.g., the first row goes from 0-1, the next row goes from 1-2,
...

 youtsc = (double(yout)-miny)/(maxy-miny) ;Scale yout to the range 0-1, the same
way as yin
 youtsc = REBIN(reform(youtsc,nz,1), nz,ny) ;Recast the scaled output grid to be 2D
(nz, ny)

 ;*********** We need to prevent extrapolation of the values of yout are outside the bounds of a
given row of yin ***************
 ;*********** for each row of the youtsc array, set any values that are outside of the values in the
corresponding row of yinsc to NAN ***************
 bd=where((youtsc LT rebin(transpose(minxvy),nz,ny)) OR (youtsc GT
rebin(transpose(maxxvy),nz,ny)) , bdct)

 youtsc = youtsc + REBIN(REFORM(DINDGEN(ny),1,ny), nz, ny) ;Add the row number so
that each row is higher than the previous. E.g., the first row goes from 0-1, the next row goes from
1-2, ...

 ;Do the interpolation (this is a streamlined version of what interpol does)
 s = VALUE_LOCATE(yinsc, youtsc) > 0L < (n_elements(vin)-2)
 vout = (youtsc-yinsc[s])*(vin[s+1] - vin[s])/(yinsc[s+1] - yinsc[s]) + vin[s]

 ;Alternative way (slower, I think) of doing the interpolation
; vin = REFORM(vin, nx*ny, /overwrite) ;make vin and yinsc 1D arrays for feeding

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

in to interpol (does interpol actually need them to be 1D?)
; yinsc = REFORM(yinsc, nx*ny, /overwrite)
; vout = interpol(vin, yinsc, youtsc)
; vin = reform(vin, nx, ny, /overwrite) ;Return vin to its original state

 return, vout

end

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

