Subject: Re: Trouble with MPFITFUN Posted by Helder Marchetto on Thu, 12 Apr 2012 08:48:44 GMT View Forum Message <> Reply to Message On Thursday, April 12, 2012 7:10:08 AM UTC+2, Craig Markwardt wrote: > On Wednesday, April 11, 2012 12:34:23 PM UTC-4, Helder wrote: >> Hi. >> I've been spending a bit too much time on this and I am wondering what is going wrong here. >> I'm trying to fit using a step function broadened by a Gaussian. >> The fitting function is: >> >> FUNCTION GaussStep, X, P >> ;Calculate the broadening of a step function with: >> ;P[0] = step position >>;P[1] = left value >> ;P[2] = right value >> :P[3] = step width>> PRINT, P >> P[0] = (P[0] > MIN(X)) < MAX(X)>> Y = DBLARR(N ELEMENTS(X)) >> LowIndeces = WHERE(X LT P[0], CountLow, COMPLEMENT = HighIndeces, NCOMPLEMENT=CountHigh) >> IF CountLow GT 0 THEN Y[LowIndeces] = P[1] >> IF CountHigh GT 0 THEN Y[HighIndeces] = P[2] >> Sigma=P[3] >> nPts=10*Sigma+1.0 >> kernel=DINDGEN(nPts)-(nPts-1)/2.0 >> kernel=EXP(-kernel^2/(2.*sigma^2)) >> kernel/=TOTAL(kernel,/DOUBLE) >> yconvol = CONVOL(Y,kernel,/EDGE_TRUNCATE) >> RETURN, yconvol >> END >> >> To test MPFITFUN I use the following code: >> PRO TestFit >> xData = DINDGEN(201) >> yData = DBLARR(201)+RANDOMU(SEED,201,/DOUBLE)*0.2-0.1 >> yData[150:200] += 1.0D >> StParam = [148D,MIN(yData),MAX(yData),3D] >> DataErr = DBLARR(N_ELEMENTS(xData))+0.2D >> Results = MPFITFUN('GaussStep', xData,yData, DataErr, StParam, STATUS=status, /quiet) >> PLOT, xData, yData

>> The output shows all the calls of the fitting function. And I find that at the end there is always

>> END

>> PRINT, 'Final Parameters = ', Results
>> PRINT, 'Start Parameters = ', StParam

>> OPLOT, xData, GaussStep(xData,Results), COLOR = 255L

NO change in the first parameter. Here is an example of the output:

```
>>
       148.00000
                  -0.099990073
                                   1.0994661
                                                3.0000000
>>
       148.00000
                 -0.099990073
                                  1.0994661
                                                3.0000000
>>
                                   1.0994661
       148.00000
                  -0.099990071
                                                3.0000000
>>
       148.00000
                 -0.099990073
                                   1.0994661
                                                3.0000000
>>
       148.00000
                                   1.0994661
                  -0.099990073
                                                3.0000000
>>
       148.00000 0.0073445709
                                   1.0082363
                                                2.3488363
>>
       148.00000 0.0073445709
                                   1.0082363
                                                2.3488363
>>
       148.00000 0.0073445710
                                   1.0082363
                                                2.3488363
>>
>> ...
       148.00000 -0.0039705287
                                  0.99188729
                                                 2.0999998
>>
       148.00000 -0.0039705257
                                  0.99188729
                                                 2.1000000
>>
       148.00000 -0.0039705254
                                  0.99188729
                                                 2.1000000
>>
       148.00000 -0.0039705254
                                  0.99188729
                                                 2.1000000
>> Final Parameters =
                                                                  2.1000000
                        148.00000 -0.0039705254
                                                    0.99188729
>> Start Parameters =
                        148.00000
                                   -0.095071379
                                                    1.0978406
                                                                 3.0000000
>>
```

>> Throughout all the fitting procedure the first parameter has never been changed.

>> Am I doing something terribly wrong? I generally have no estimates for the errors in the data, therefore I used 0.1. In the example data this is easy to calculate, but the fitting has to be applied to the most different data sets.

>>

>>

>> I also tried playing with the XTOL parameter without any success.

>>

>> Any tips are appreciated.

>>

- >> Many thanks,
- >> Helder

>>

>> PS: I tried lots of different initial conditions, I tried using "parinfo.fixed" to block the other parameters, ... but at the end I never get any change in P[0]... sigh..

>>

>> PSS: The function GaussStep is working fine... I can replot the data in the correct way by moving the parameters by hand.

>

> You are getting closer to the right track.

>

> If I were you, I would avoid complicated invocations of CONVOL. It looks like you can compute your "smoothed step function" exactly, by using the ERF (formerly ERRORF) function. I've used that before with success.

>

> ERF is much better than your convolution because it actually integrates the gaussian, rather than assuming that sampling a gaussian at a few discrete points is sufficient to integrate it.

>

> You might also want to play with using PARINFO, and setting the .STEP or .RELSTEP fields. The fitter can get stuck if your peak position and/or step position is between data samples. Set

the parameter step size to something close to your data grid sample size.

>

- > Best wishes,
- > Craig Markwardt

Thanks Craig,

your tip was very useful. I never thought about the ERF! Here is the function I am now using:

FUNCTION StepErrFun, X, P

;Parameter definition

P[0] = Step height

;P[1] = Location of step

;P[2] = 2*SQRT(ALOG(P[2])) is the FWHM

;P[3] = Step offset

RETURN,(P[0]/2D)* ERFC((P[1]-X)/P[2])+P[3]

END

So far it worked fine!

Thanks again.

I will see what I can do with the Parinfo parameters. I'm currently using the procedure to show live fitting whilst moving a cross section on an image and it seems stable enough... Fits edges also where one would not see one.

Regards, Helder