Subject: Re: Matrix multiplication again...
Posted by Yngvar Larsen on Wed, 09 May 2012 15:01:30 GMT

View Forum Message <> Reply to Message

On Tuesday, 8 May 2012 20:45:14 UTC+2, Mats Lofdahl wrote:

> Den tisdagen den 8:e maj 2012 kl. 20:08:02 UTC+2 skrev Yngvar Larsen:

>> On Monday, 7 May 2012 17:40:49 UTC+2, Mats Léfdahl wrote:

>>> Suppose | have an image (let's say 128x128=16384 pixels) and for each pixel there is a
vector with maybe 100 (could be more) elements. | organize this as a variable x with 16384 by
100 elements.

>>>

>>> Suppose | also have a 100x100 matrix M (or in general not symmetric but nevermind) and |
want to calculate y, which is then also a 16384 by 100 array where

>>>

>>> y[i,*] = M ## X[i,*]

>>

>> Why don't you simply use: y = M##x ?
>

> Probably because | kept thinking of x as a 3D array, in spite of having reformed it to 2D...

Speaking of which: It would be nice if the # and ## operators worked on arrays of more than 2
dimensions (very useful for e.g. tensors or your 3D example). Someting like this:

A~fltarr(N_1,N 2,..., N m M)
B ~ fltarr(M, P_1, P_2, ..., P_K)
=>size(A# B, /dimensions) =[N_1,N_2, .., Nm,P_1,P_2,...,P_K)

|.e. the last dimension of A is "dotted" with the first dimension of B, and the other dimensions are
preserved. Most likely it would not alter IDL's internal implementation of # and ## much.

Right now, we have to reform like in the OPs original problem (here with # instead of ##):

A =reform(A, N_1*N_2*.*N_m, M, /overwrite)

B = reform(B, M, P_1*P_2*..*P_k, /overwrite)

C=A#B

C=reform(C,N_1,N _2,...,N.m,P_1, P _2, ..., P_k, /overwrite)

And analogously for ##.

| use this pattern all the time. No reason that # and ## should not be able to handle this internally
so we don't have to.

>> "rows" and "columns" are rather confusing terms in IDL...
>

> | know! I've opted to organize my code so | can always use the ## operator for matrix
multiplication. Seems to work so far.

Right. Like | said in my previous, | opted for # for no particular reason, but ## of course works

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33932&goto=80064#msg_80064
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80064
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

equally well. One of the arrays will be traversed with a stride in memory either way with these
operators. Of course, a third option, let's call it ###, could work like this:

A ~ fltarr(N, M)
B ~ fltarr(N, P)
=> size(A ### B, /dimensions) = [M, P]

This would most likely be the most efficient way to do matrix multiplication since both arrays are
traversed with stride one. If | understand the documentation right, the MATRIX_MULTIPLY
function might work this way with smart use of the /JATRANSPOSE and/or /BTRANSPOSE
keywords.

Yngvar

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

