
Subject: Re: Efficiently perform histogram reverse indices like procedure on a string
array?
Posted by Craig Markwardt on Thu, 26 Jul 2012 21:33:51 GMT
View Forum Message <> Reply to Message

On Wednesday, July 25, 2012 7:39:33 PM UTC-4, Bogdanovist wrote:
> I have an array of a data structure, one tag of which is a string identifier indicating which
location the data belongs to. There are many thousands of data points, but only about a dozen or
so unique locations.
>
> I make frequent use of the HISTOGRAM function with the reverse_indices in order to carve up
data by some identifier, most commonly the time. In this case, I want to divide out the data by site
efficiently. I can't use HISTOGRAM on strings, so I need some other approach. There are
plenty of ways this can be done, but I'd like some views on the better and most efficient
ways to do it.
>
> Take an example, say we have a simple string array
>
> foo=['a','b','c& #39;,'b','b','a&
#39;,'a','c']
>
> To determine the list of unique strings we could do
>
> sfoo = foo[sort(foo)]
> print,sfoo[uniq(sfoo)]
>
> We can then repeatedly use WHERE to find the indices in the data array(s) corresponding to
each site.
>
> Is there a quicker/better way to do this? Repeatedly calling WHERE seems inefficient (certainly
HISTOGRAM is way faster when it is usable)

I prefer to do it slightly differently than your other suggestions.

I locate the breakpoints between different runs of strings like this,

 ibreaks = where(sfoo[1:*] NE sfoo, ct)

This gives the interior breakpoints. In your case, ibreaks = [2,5], which is the point where 'a'
changes to 'b', and 'b' changes to 'c'. Usually I add this little bit of extra post-processing,

 if ct EQ 0 then begin
 ibreaks = [0, n_elements(sfoo)]
 endif else begin
 ibreaks = [0, ibreaks+1, n_elements(sfoo)]
 endelse

You need that little extra 'if' statement to handle the case where you have only one unique string,

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34317&goto=80983#msg_80983
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80983
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

so there are no breaks at all.

The start of the ith run is indexed by ibreaks[i], and the end of the ith run is indexed by
ibreaks[i+1]-1, where i goes from 0 through n_elements(sfoo)-1.

I.e. the ith run is given by sfoo[ibreaks[i]:ibreaks[i+1]-1]. Of course you can index back into the
original array once you've done this.

Craig

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

