
Subject: Re: How to prevent proliferation of leftover objects when NG plots are
included in unit tests.
Posted by Russell Ryan on Wed, 15 Aug 2012 15:18:02 GMT
View Forum Message <> Reply to Message

On Tuesday, August 14, 2012 6:52:15 PM UTC-4, Paul van Delst wrote:
> Hello,
>
>
>
> On 08/14/12 16:33, Michael Galloy wrote:
>
>> On 8/14/12 1:56 PM, Paul van Delst wrote:
>
>>> However, when I include a PLOT() function call in a unit test (just to have a looksee at the
pretend data I create), I
>
>>> have thousands of leftover objects, all NG related:
>
>>>
>
>>> IDL> help, obj_valid()
>
>>> <Expression> OBJREF = Array[4796]
>
>>>
>
>>> Printing out the first 11 objects:
>
>>>
>
>>> IDL> for i=0,10 do help, (obj_valid())[i],/full
>
>>> <Expression> OBJREF = <ObjHeapVar175(IDLITSYSTEM)> refcount=154
>
>>> <Expression> OBJREF = <ObjHeapVar176(IDLITPROPERTYDESCRIPTOR)>
refcount=2
>
>>> <Expression> OBJREF = <ObjHeapVar177(IDL_CONTAINER)> refcount=1
>
>>> <Expression> OBJREF = <ObjHeapVar179(IDLITPROPERTYDESCRIPTOR)>
refcount=2
>
>>> <Expression> OBJREF = <ObjHeapVar181(IDLITCONTAINER)> refcount=4
>
>>> <Expression> OBJREF = <ObjHeapVar182(IDLITPROPERTYDESCRIPTOR)>
refcount=2
>

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7546
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34375&goto=81121#msg_81121
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81121
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> <Expression> OBJREF = <ObjHeapVar183(IDL_CONTAINER)> refcount=1
>
>>> <Expression> OBJREF = <ObjHeapVar185(IDLITPROPERTYDESCRIPTOR)>
refcount=2
>
>>> <Expression> OBJREF = <ObjHeapVar188(IDLITCONTAINER)> refcount=3
>
>>> <Expression> OBJREF = <ObjHeapVar189(IDLITPROPERTYDESCRIPTOR)>
refcount=2
>
>>> <Expression> OBJREF = <ObjHeapVar190(IDL_CONTAINER)> refcount=1
>
>>>
>
>>> When I kill the plot window, I still have a great many leftovers:
>
>>>
>
>>> IDL> help, obj_valid()
>
>>> <Expression> OBJREF = Array[1395]
>
>>> IDL> for i=0,10 do help, (obj_valid())[i],/full
>
>>> <Expression> OBJREF = <ObjHeapVar175(IDLITSYSTEM)> refcount=151
>
>>> <Expression> OBJREF = <ObjHeapVar176(IDLITPROPERTYDESCRIPTOR)>
refcount=2
>
>>> <Expression> OBJREF = <ObjHeapVar177(IDL_CONTAINER)> refcount=1
>
>>> <Expression> OBJREF = <ObjHeapVar179(IDLITPROPERTYDESCRIPTOR)>
refcount=2
>
>>> <Expression> OBJREF = <ObjHeapVar181(IDLITCONTAINER)> refcount=3
>
>>> etc....
>
>>>
>
>>> My question is: How do I prevent this proliferation of NG plot objects? Or, at the very least,
how do I safely delete
>
>>> them?
>
>>>
>
>>

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> Glad you like mgunit!
>
>
>
> Oh yeah - for IDL stuff that is used for producing actual numbers (as opposed to just pictures), I
always use your unit
>
> testing setup. In just the last two days I've caught at least 10 bugs (I would actually call them
"development
>
> inconsistencies" but then everyone on this ng would give me a hard time... :o)
>
>
>
> For development of IDL code that makes heavy use of objects, your MGunit package is a must
for me.
>
>
>
>> Using the close method (or closing the graphics window, in the case BUFFER=0) works for
me from the command line:
>
>>
>
>> IDL> help, /heap
>
>> Heap Variables:
>
>> # Pointer: 0
>
>> # Object : 0
>
>> IDL> p = plot(/test, /buffer)
>
>> IDL> p.close
>
>> IDL> help, /heap
>
>> Heap Variables:
>
>> # Pointer: 0
>
>> # Object : 0
>
>>
>
>> Does this happen for you? Is it just inside the testing framework that is causing problems?

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>
> No, that does no happen for me, no, the unit testing framework is not involved in this object
explosion. Regarding the
>
> latter, if that's how my original post came across, then let me be very clear to other potential
user of MGunit: It is
>
> not the unit testing framework that is causing this; it is a congenital problem of IDL.
>
>
>
> The reason I even mentioned the unit testing is because calling plot() in multiple unit tests
causes the creation of
>
> 10,000's of object references (as opposed to the couple of thousand if I do it on the command
line).
>
>
>
> When I follow your example I get the results below:
>
>
>
> IDL> help, /heap
>
> Heap Variables:
>
> # Pointer: 0
>
> # Object : 0
>
> IDL> p = plot(/test, /buffer)
>
> IDL> p.close
>
> IDL> help, /heap
>
> Heap Variables:
>
> # Pointer: 1168
>
> # Object : 1395
>
>
>
> <ObjHeapVar102> refcount=152

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> STRUCT = -> IDLITSYSTEM Array[1]
>
> <ObjHeapVar103> refcount=1
>
> STRUCT = -> IDLITPROPERTYDESCRIPTOR Array[1]
>
> <ObjHeapVar104> refcount=0
>
> STRUCT = -> IDL_CONTAINER Array[1]
>
>
>
> ...etc...
>
>
>
> So, I guess my 8.1 version of IDL has a bug in its garbage collection (now that I think of it, I
recall this issue being
>

> raised at some point in the past in this ng....)
>
>
>
> I'm scheduled for an upgrade to v8.2 (which I assume you have?) so hopefully that will solve
these function graphics
>
> object infestations.
>
>
>
> Thanks for the confirmation. And MGunit. :o)
>
>
>
> cheers,
>
>
>
> paulv

Hi Paul & co.

I was tinkering around with the functional graphics the other day trying to show a friend (who had
only heard of it all). And, I noticed the same thing with 1000s of leftover objects and pointers. I
had the same worry about memory leaks and whatnot. I am using IDL 8.1, and it sounds from
Michael that this isn't the ideal behavior and was switched in 8.2. whew...

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

