Subject: Re: How to prevent proliferation of leftover objects when NG plots are
included in unit tests.
Posted by Russell Ryan on Wed, 15 Aug 2012 15:18:02 GMT

View Forum Message <> Reply to Message

On Tuesday, August 14, 2012 6:52:15 PM UTC-4, Paul van Delst wrote:
> Hello,
>

On 08/14/12 16:33, Michael Galloy wrote:

V V.V V

>> On 8/14/12 1:56 PM, Paul van Delst wrote:

>

>>> However, when | include a PLOT() function call in a unit test (just to have a looksee at the
pretend data | create), |

>

>>> have thousands of leftover objects, all NG related:

>

>>>

>

>>> |DL> help, obj_valid()

>

>>> <Expression> OBJREF = Array[4796]

>

>>>

>

>>> Printing out the first 11 objects:

>

>>>

>

>>> |DL> for i=0,10 do help, (obj_valid())[i],/full

>

>>> <Expression> OBJREF = <ObjHeapVarl75(IDLITSYSTEM)> refcount=154

>

>>> <Expression> OBJREF = <ObjHeapVarl76(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>

>>> <Expression> OBJREF =<ObjHeapVarl77(IDL_CONTAINER)> refcount=1

>

>>> <Expression> OBJREF = <ObjHeapVarl79(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>

>>> <Expression> OBJREF = <ObjHeapVarl81(IDLITCONTAINER)> refcount=4
>

>>> <Expression> OBJREF = <ObjHeapVar182(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7546
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34375&goto=81121#msg_81121
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81121
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> <Expression> OBJREF =<ObjHeapVarl83(IDL_CONTAINER)> refcount=1

>

>>> <Expression> OBJREF =<ObjHeapVarl85(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>

>>> <Expression> OBJREF = <ObjHeapVarl88(IDLITCONTAINER)> refcount=3
>

>>> <Expression> OBJREF = <ObjHeapVarl89(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>

>>> <Expression> OBJREF = <ObjHeapVarl90(IDL_CONTAINER)> refcount=1

>

>>>

>

>>> When | kill the plot window, | still have a great many leftovers:

>

>>>

>

>>> |DL> help, obj_valid()

>

>>> <Expression> OBJREF = Array[1395]

>

>>> |DL> for i=0,10 do help, (obj_valid())[i],/full

>

>>> <Expression> OBJREF = <ObjHeapVarl75(IDLITSYSTEM)> refcount=151

>

>>> <Expression> OBJREF =<ObjHeapVarl76(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>

>>> <Expression> OBJREF = <ObjHeapVarl77(IDL_CONTAINER)> refcount=1

>

>>> <Expression> OBJREF =<ObjHeapVarl79(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>

>>> <Expression> OBJREF = <ObjHeapVarl81(IDLITCONTAINER)> refcount=3
>

>>> . .eflc....

>

>>>

>

>>> My question is: How do | prevent this proliferation of NG plot objects? Or, at the very least,
how do | safely delete

>

>>> them?

>

>>>

>

>>

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>> Glad you like mgunit!

>

>

>

> Oh yeah - for IDL stuff that is used for producing actual numbers (as opposed to just pictures), |
always use your unit

>

> testing setup. In just the last two days I've caught at least 10 bugs (I would actually call them
"development

inconsistencies" but then everyone on this ng would give me a hard time... :0)

V V VYV

>

> For development of IDL code that makes heavy use of objects, your MGunit package is a must
for me.

>

>

>

>> Using the close method (or closing the graphics window, in the case BUFFER=0) works for
me from the command line:

>

>>

>

>> |DL> help, /heap

>

>> Heap Variables:

>

>> # Pointer: 0

>

>> #Object: 0

>

>> |DL> p = plot(/test, /buffer)
>

>> |DL> p.close

>

>> |DL> help, /heap

>

>> Heap Variables:

>

>> # Pointer: 0

>

>> #Object: 0

>

>>

>

>> Does this happen for you? Is it just inside the testing framework that is causing problems?

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>

>

> No, that does no happen for me, no, the unit testing framework is not involved in this object
explosion. Regarding the

>

> |atter, if that's how my original post came across, then let me be very clear to other potential
user of MGunit: It is

not the unit testing framework that is causing this; it is a congenital problem of IDL.

V V.V V

>
> The reason | even mentioned the unit testing is because calling plot() in multiple unit tests

causes the creation of
>

> 10,000's of object references (as opposed to the couple of thousand if | do it on the command
line).
>

When | follow your example | get the results below:

IDL> help, /heap
Heap Variables:
Pointer: 0
Object : 0
IDL> p = plot(/test, /buffer)
IDL> p.close
IDL> help, /heap
Heap Variables:
Pointer: 1168

Object : 1395

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

<ObjHeapVar102> refcount=152

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

STRUCT =->IDLITSYSTEM Array[1]
<ObjHeapVarl03> refcount=1

STRUCT =->IDLITPROPERTYDESCRIPTOR Array[1]
<ObjHeapVar104> refcount=0

STRUCT =->IDL_CONTAINER Array[1]

...etc...

VVVVVVVVVVVYVYVYVYVYV

>

> So, | guess my 8.1 version of IDL has a bug in its garbage collection (now that I think of it, |
recall this issue being
>

> raised at some point in the past in this ng....)

>

>

>

> I'm scheduled for an upgrade to v8.2 (which | assume you have?) so hopefully that will solve
these function graphics

object infestations.

Thanks for the confirmation. And MGunit. :0)

cheers,

VVVVVVVVVYVYVYVYVYV

paulv
Hi Paul & co.

| was tinkering around with the functional graphics the other day trying to show a friend (who had
only heard of it all). And, | noticed the same thing with 1000s of leftover objects and pointers. |
had the same worry about memory leaks and whatnot. | am using IDL 8.1, and it sounds from
Michael that this isn't the ideal behavior and was switched in 8.2. whew...

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

