Subject: Re: How to prevent proliferation of leftover objects when NG plots are
included in unit tests.
Posted by Paul Van Delst[1] on Tue, 14 Aug 2012 22:52:15 GMT

View Forum Message <> Reply to Message

Hello,

On 08/14/12 16:33, Michael Galloy wrote:

> On 8/14/12 1:56 PM, Paul van Delst wrote:

>> However, when | include a PLOT() function call in a unit test (just to have a looksee at the
pretend data | create), |

>> have thousands of leftover objects, all NG related:

>>

>> |DL> help, obj_valid()

>> <Expression> OBJREF = Array[4796]

>>

>> Printing out the first 11 objects:

>>

>> |DL> for i=0,10 do help, (obj_valid())[i],/full

>> <Expression> OBJREF <ObjHeapVarl75(IDLITSYSTEM)> refcount=154

>> <Expression> OBJREF <ObjHeapVarl76(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>> <Expression> OBJREF
>> <Expression> OBJREF
refcount=2

>> <Expression> OBJREF
>> <Expression> OBJREF
refcount=2

>> <Expression> OBJREF
>> <Expression> OBJREF
refcount=2

>> <Expression> OBJREF
>> <Expression> OBJREF
refcount=2

>> <Expression> OBJREF = <ObjHeapVarl90(IDL_CONTAINER)> refcount=1
>>

>> When | kill the plot window, I still have a great many leftovers:

>>

>> |DL> help, obj_valid()

>> <Expression> OBJREF = Array[1395]

>> |DL> for i=0,10 do help, (obj_valid())[i],/full

>> <Expression> OBJREF = <ObjHeapVarl75(IDLITSYSTEM)> refcount=151
>> <Expression> OBJREF <ObjHeapVarl76(IDLITPROPERTYDESCRIPTOR)>
refcount=2

>> <Expression> OBJREF
>> <Expression> OBJREF
refcount=2

>> <Expression> OBJREF

<ObjHeapVarl77(IDL_CONTAINER)> refcount=1
<ObjHeapVarl79(IDLITPROPERTYDESCRIPTOR)>

<ObjHeapVarl81(IDLITCONTAINER)> refcount=4
<ObjHeapVarl82(IDLITPROPERTYDESCRIPTOR)>

<ObjHeapVarl83(IDL_CONTAINER)> refcount=1
<ObjHeapVarl85(IDLITPROPERTYDESCRIPTOR)>

<ObjHeapVarl838(IDLITCONTAINER)> refcount=3
<ObjHeapVarl89(IDLITPROPERTYDESCRIPTOR)>

<ObjHeapVarl77(IDL_CONTAINER)> refcount=1
<ObjHeapVarl79(IDLITPROPERTYDESCRIPTOR)>

<ObjHeapVarl81(IDLITCONTAINER)> refcount=3

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34375&goto=81137#msg_81137
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81137
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> ..etc....

>>

>> My question is: How do | prevent this proliferation of NG plot objects? Or, at the very least,
how do | safely delete

>> them?

>>

>

> Glad you like mgunit!

Oh yeah - for IDL stuff that is used for producing actual numbers (as opposed to just pictures), |
always use your unit

testing setup. In just the last two days I've caught at least 10 bugs (I would actually call them
"development

inconsistencies” but then everyone on this ng would give me a hard time... :0)

For development of IDL code that makes heavy use of objects, your MGunit package is a must for
me.

> Using the close method (or closing the graphics window, in the case BUFFER=0) works for me
from the command line:

IDL> help, /heap
Heap Variables:
Pointer: O
Object : O
IDL> p = plot(/test, /buffer)
IDL> p.close
IDL> help, /heap
Heap Variables:
Pointer: 0
Object : O

VVVVVVVYVYVYVYVYVYV

Does this happen for you? Is it just inside the testing framework that is causing problems?

No, that does no happen for me, no, the unit testing framework is not involved in this object
explosion. Regarding the

latter, if that's how my original post came across, then let me be very clear to other potential user
of MGunit: It is

not the unit testing framework that is causing this; it is a congenital problem of IDL.

The reason | even mentioned the unit testing is because calling plot() in multiple unit tests causes
the creation of

10,000's of object references (as opposed to the couple of thousand if | do it on the command
line).

When | follow your example | get the results below:

IDL> help, /heap

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Heap Variables:
Pointer: 0
Object : 0
IDL> p = plot(/test, /buffer)
IDL> p.close
IDL> help, /heap
Heap Variables:
Pointer: 1168
Object : 1395

<ObjHeapVar102> refcount=152

STRUCT =->IDLITSYSTEM Array[1]
<ObjHeapVarl03> refcount=1

STRUCT =->IDLITPROPERTYDESCRIPTOR Array[1]
<ObjHeapVarl04> refcount=0

STRUCT =->IDL_CONTAINER Array[1]

...etc...

So, | guess my 8.1 version of IDL has a bug in its garbage collection (now that | think of it, | recall
this issue being

raised at some point in the past in this ng....)

I'm scheduled for an upgrade to v8.2 (which | assume you have?) so hopefully that will solve
these function graphics

object infestations.

Thanks for the confirmation. And MGunit. :0)

cheers,

paulv

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

