
Subject: Using bitwise OR with non-integers; and using !NULL in expressions
Posted by tom.grydeland on Wed, 28 Nov 2012 10:13:09 GMT
View Forum Message <> Reply to Message

Hello all,

I found to my delight that bitwise OR on strings evaluates left-to-right, with
empty strings counting as FALSE, which lets me (partially) adapt a useful
idiom for default values from some other language:

 my_value = table_value OR default_value

which to my mind is much more readable than (and avoids the repetition of) the
equivalent:

 my_value = table_value ? table_value : default_value

or (horror of horrors):

 IF table_value NE '' THEN BEGIN
 my_value = table_value
 ENDIF ELSE BEGIN
 my_value = default_value
 ENDELSE

It is perhaps strange that it should work, but I was happy to discover this.
Trying to see how far this useful idiom could be stretched, I tried a couple
of other variants:

 IDL> print, 0.0 or 42.0
 42.0000
 IDL> print, 1.2 or 42.0
 1.20000

So the idiom carries over to floating-point numbers also. Excellent.

 IDL> print, 1 or 42.0
 1.00000

Huh? Why did my integer become a float?

 IDL> print, complex(0,0) or 42
 (42.0000, 0.00000)

Okay, so IDL converts both sides to the narrowest type wide enough to
accomodate both sides. If you're going to do bitwise OR, this makes sense.
If you're going to return one side or the other, it is less useful, IMO.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34786&goto=82235#msg_82235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 IDL> print, 0 or 'foo'
 % Type conversion error: Unable to convert given STRING to Long.
 % Detected at: $MAIN$
 0

Well, for an operator advertised to do bitwise OR on integers, trying to
convert string to integer is perhaps not unreasonable.

 IDL> print, !NULL or 'foo'
 % Variable is undefined: <UNDEFINED>.
 % Execution halted at: $MAIN$

But in this case converting the type is a bad idea: !NULL is false, just like
the empty string is, and I would have hoped that this should evaluate to 'foo'
without error. The same goes for this case:

 IDL> print, 'foo' or !NULL
 % Variable is undefined: <UNDEFINED>.
 % Execution halted at: $MAIN$

What I'd like to see (as a minimal change from today's behaviour) is logic
something like this:

 IF <both sides are integer types> THEN BEGIN
 RETURN, <bitwise or in widest type necessary>
 ENDIF ELSE BEGIN
 RETURN, LHS ? LHS : RHS
 ENDELSE

In this case, type conversion occurs only to match up the width of integer
arguments. In all other cases, type conversion is unnecessary and only the
truth or falsity of the arguments counts. (This would break >> 0 OR '12' <<
relative to today's behaviour -- but that is fixable.)

On the other hand, the whole behaviour of OR for non-integers has little to do
with BITWISE operations, and it makes integers behave very differently from
other types for this operator, which violates the principle of least surprise.
The consistent and logical behaviour would be to attempt conversion of ANY LHS
or RHS to an integral type and do bitwise operations on the results. This
would certainly break the idiom for strings and floating-point types.

If this were to happen, I would _really_ like to have the logical || work for
this idiom, instead. I.e. it would evaluate to its left hand side if it were
(logially) true, and its right hand side otherwise. Today, it returns 0 or 1
which is useful only for tests, not for values. This could break existing
code if the code relied on || raising exceptions when presented with values
without obvious truth or falsity (e.g. arrays)

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

That way, the idiom on the first line could work without regard for the type
of the RHS:

 my_value = compute(arg) || 42
 my_value = compute(arg) || 42.0

would both behave the same, i.e. the returned value is used if it is true, and
42 is used otherwise. The operator should short-circuit, i.e. the RHS is
evaluated only if the LHS is false:

 my_value = cheap_approximation(x) || expensive_approximation(x)

where expensive_approximation() is called only if cheap_approximation()
produced a FALSE value: 0, 0.0, '', or !NULL.

Finally, this mind-blowing exercise for the reader (see if you can guess the
result before asking IDL):

 print, indgen(5) or complex(3,1)

--T

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

