
Subject: Constructing Color Tables in IDL
Posted by davidf on Sat, 15 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

Folks,

Several people have asked me this week how to construct a
color table. I've taken this to mean (perhaps erroneously)
that there is general interest in the subject. :-)

So here is how I might go about it. I'll construct a simple
color table first, then a more complicated one to give you
the general idea of how even very complex color tables might
be constructed.

First, suppose you want a color table that goes from yellow
in the first color index to red in the last color index. And
suppose further that you want to have 200 colors or shades
in the color table. You know that the color yellow is
represented by the RGB color triple (255,255,0) and that
the color red is represented by the RGB triple (255,0,0).

You know also that to create a color table you need three
vectors, representing the red, green, and blue color values
of the colors that make up the color table. The trick, therefore,
is to know how to make up those color vectors. Another way
to say this is that we need to know the RGB values of all
the colors in a smooth progression from yellow to red.

What would constitute a smooth progression of colors?
Well, clearly the red vector values need to go from
the starting red value in the yellow color to the ending
red value in the red color. The same can be said for the
green vector values and the blue vector values. In fact,
we can write a general expression to go from any number
to some other number in a arbitray number of steps. The
expression looks like this:

 vector = beginNum + (endNum - beginNum) * scaleFactor

where we have to define the beginning number, the ending
number, and the scale factor (which will depend upon the
number of steps we want to take).

Suppose we define these quantities like this:

 beginNum = 10.0
 endNum = 20.0

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5487&goto=8238#msg_8238
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8238
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 steps = 5
 scaleFactor = FINDGEN(steps) / (steps - 1)

Then, using the equation above, we print:

 PRINT, beginNum + (endNum - beginNum) * scaleFactor

We get:

 10.0000 12.5000 15.0000 17.5000 20.0000

So far, so good. Let's apply this to our color table problem.
We want the red vector value to go from 255 (the red value in
the yellow color) to 255 (the red value in the red color). The
green vector needs to go from 255 to 0. The blue vector needs to go
from 0 to 0.

Pretty simple. We probably don't even need to apply the
algorithm for the red or blue vectors. We can simply write:

 steps = 200
 redVector = REPLICATE(255, steps)
 blueVector = REPLICATE(0, steps)

The green vector (according to the algorithm) is:

 scaleFactor = FINDGEN(steps) / (steps - 1)
 beginNum = 255
 endNum = 0
 greenVector = beginNum + (endNum - beginNum) * scaleFactor

Alright, now load these color vectors, and there you have it,
a color table smoothly progressing from yellow to red!

 TVLCT, redVector, greenVector, blueVector

Well, how about a more complicated example. Suppose you want
a color table (still 200 colors) that goes from yellow
to red, but you want it go through a series of blue colors
in the middle of the table.

You can divide this into two problems similar to the first
example. In other words, in 100 steps go from yellow (255,255,0)
to blue (0,0,255), and then in 100 more steps go from blue
to red (255,0,0). Your code might look like this:

 steps = 100
 scaleFactor = FINDGEN(steps) / (steps - 1)

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; Do first 100 colors (yellow to blue).

 ; Red vector: 255 -> 0
 redVector = 255 + (0 - 255) * scaleFactor

 ; Green vector: 255 -> 0
 greenVector = 255 + (0 - 255) * scaleFactor

 ; Blue vector: 0 -> 255
 blueVector = 0 + (255 - 0) * scaleFactor

 ; Do second 100 colors (blue to red).

 ; Red vector: 0 -> 255
 redVector = [redVector, 0 + (255 - 0) * scaleFactor]

 ; Green vector: 0 -> 0
 greenVector = [greenVector, REPLICATE(0, steps)]

 ; Blue vector: 255 -> 0
 blueVector = [blueVector, 255 + (0 - 255) * scaleFactor]

Finally, load your new color table:

 TVLCT, redVector, greenVector, blueVector

I think you can easily see how to extend this concept
to interpolating colors between any starting and ending
color triples.

By the way, you don't necessarily have to write your own
code to do this (although if you do you will have the
advantage of understanding what you are doing) because
this is exactly what XPALETTE allows you to do when
you interpolate between two colors that you have
marked by clicking on them with the cursor!

Cheers!

David

David Fanning, Ph.D.
Fanning Software Consulting
2642 Bradbury Court, Fort Collins, CO 80521
Phone: 970-221-0438 Fax: 970-221-4762
E-Mail: davidf@dfanning.com

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Coyote's Guide to IDL Programming: http://www.dfanning.com

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

