
Subject: Re: HASH with case insensitive keys versus a new DICT class
Posted by Jeremy Bailin on Tue, 11 Dec 2012 22:31:10 GMT
View Forum Message <> Reply to Message

On 12/11/12 2:14 PM, Chris Torrence wrote:
> Hi all,
>
> I've been toying around with adding support for the "." operator to HASH. So, for example, you
could do the following:
>
> h = HASH()
> h.field1 = "my data" ; adds the key "FIELD1" with data "my data"
> print, h.field1
>
> So, in essence, this would be a "dynamic" structure.
>
> The only problem with this approach is that the keys become all uppercase, because of the
case insensitivity of IDL variables. Also, if you add keys during initialization (or using the square
brackets), then they would need to be valid IDL variable names, otherwise you couldn't access
them using the ".". So no spaces or special characters.
>
> I see three possible solutions:
>
> 1. Add a keyword to HASH() that forces it into "valid IDL variable" mode. Keys can only be
strings. The keys could all be stored as the user provided them, but internally the actual hash
would be done with uppercase versions of the keys. The Hash could throw errors if the key wasn't
a valid IDL variable name.
> Advantage: still uses the HASH interface, the case of keys can be preserved & returned to the
user
> Disadvantage: confusing - you could have 2 hashes in your program that behave differently,
depending upon a creation keyword that you might not even know was set.
>
> 2. Change the HASH behavior, so if a key is a string, then internally it constructs its hash using
an "IDL_Validname()" version of the key. Again, we would store the original keys, so they could be
returned intact. Numeric keys would be unchanged.
> Advantage: No weird keyword to have to explain - just a single hash class.
> Disadvantage: Backwards compatibility issues - could no longer have 2 keys that differed only
in their case. Would need to explain that if you want to use "." then you have to be "careful" with
your key names.
>
> 3. Add a new "DICT" class, that behaves differently than HASH. Keys can only be strings. Keys
could still be stored (and returned) with mixed case, errors are thrown if a key isn't a valid IDL
variable name. Internally, the actual hash would be done with uppercase versions of the keys.
> Advantage: No backwards compatibility issues. Documentation is very clear.
> Disadvantage: Yet another class.
>
> Just to reiterate, in all 3 cases, the original "mixed" case keys would be stored, and could be
returned with the hash.Keys() method.

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34842&goto=82424#msg_82424
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82424
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Thoughts? Is anyone storing 2 keys that differ only in their case? Are you using HASH, and if
so, for what purpose?
>
> Thanks!
> -Chris
> ExelisVIS
>

I would strongly argue against 1 or 2. There is zero expectation that a
hash will treat its keys as anything other than verbatim, and anything
that makes it do so is a bad idea.

3 is fine, but I'm not sure what the point is. (did you see what I did
there?)

-Jeremy.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

