View Forum Message <> Reply to Message

```
On Friday, January 25, 2013 10:52:50 PM UTC+1, Kat wrote:
> Hey guys,
>
> I'm trying to run an autocorrelation on a 2D plot and it is giving me way crazy/bad results.
Seems simple enough, but it doesn't seem to be giving me what I should be expecting. I ran the
following simple example below:
>
>
>
  a=indgen(100)*.2-2
>
>
>
  b=sin(a)
>
  lag=[-7,-6,-5,-4,-3,-2,-1, 1.0,2,3,4,5,6,7]
>
>
>
>
  Here are the values in column form for easy viewing:
>
>
>
  ENVI> print, transpose(lag)
>
     -7.00000
>
>
>
     -6.00000
>
     -5.00000
>
>
     -4.00000
>
>
>
     -3.00000
>
     -2.00000
>
>
     -1.00000
>
>
      1.00000
>
>
      2.00000
>
>
      3.00000
```

```
>
     4.00000
>
>
      5.00000
>
>
>
     6.00000
>
      7.00000
>
>
>
>
  ENVI> print, transpose(autocorr)
>
     0.777030
>
>
     0.808242
>
>
     0.839966
>
>
>
     0.872025
>
     0.904238
>
>
>
     0.936422
>
     0.968397
>
>
     0.968397
>
>
     0.936422
>
>
     0.904238
>
     0.872025
>
     0.839966
>
>
     0.808242
>
>
     0.777030
>
>
>
```

> I may be mistaken, but in this instance I have three "sin" type curves which repeat roughly every 6 units. So for lag 6ish, the autocorrelation value should be going back up close to 1-ish. Yet this doesn't seem to be the case in my code.

> Can someone help explain to me why this is not working? And hopefully suggest some way to

make it work?

>

> Thanks guys!

Several issues here.

First, I don't know what [a,b] is doing in that call. I assume you meant to calculate the autocorrelation of b:

```
autocorr=a correlate(b, lag)
```

Second, sure a sine repeats after $2^*!pi = 6$ but your sampling is in steps of 0.2, so the sine repeats after $5^*2^*!pi = 31$ array elements so your lag vector is too short for you to see the second peak.

Third, that second peak will be rather attenuated because 31 is a significant part of 100 (the number of elements in your array), so you may want to try this instead:

```
a=indgen(1000)*.2-2
b=sin(a)
lag=indgen(40)
autocorr=a_correlate(b, lag)
print,autocorr
```

The result is:

1.00000	0.979339	0.919713	0.823575	0.694829	0.538665
0.361360	0.170019	-0.0277101	-0.223938	-0.410852	-0.581026
-0.727717	-0.845127	-0.928641	-0.975000	-0.982433	-0.950722
-0.881211	-0.776744	-0.641553	-0.481085	-0.301784	-0.110828
0.0841515	0.275381	0.455253	0.616624	0.753107	0.859314
0.931081	0.965615	0.961622	0.919338	0.840526	0.728402
0.587498	0.423488	0.242950	0.0531106		

And you can see the second peak at a lag of about 30 elements. Plot autocorr vs the 0.2 sampling and the peak will show up at 2*!pi as it should.