Subject: Re: are there any s/w eng tools for IDL
Posted by William Clodius on Tue, 25 Feb 1997 08:00:00 GMT

View Forum Message <> Reply to Message

Mitchell R Grunes wrote:

>

> <snip>

>

> What is hungarian notation? Something like reverse-polish?

At one time some of the more publicized Microsoft programming efforts
relied on Hungarian notation to provide discipline to C coding, and the
publicity associated with this made it quite well known in some

circles, but this notation has never been uniformly adopted by
Microsoft.

From the comp.lang.c FAQ
http://phantom.iweb.net:80/docs/C/faq/ql7.8.html

"Hungarian Notation is a naming convention, invented by Charles
Simonyi, which encodes things about a variable's type (and perhaps its
intended use) in its name. It is well-loved in some circles and roundly
castigated in others. Its chief advantage is that it makes a variable's
type or intended use obvious from its name; its chief disadvantage is
that type information is not necessarily a worthwhile thing to carry
around in the name of a variable."

Such a convention might require that all integers start with the
letters, i, j, k, m, n, all logical variables start with an [, all
pointers start with a p, all structures start with an s, etc.

In languages that perform implicit type changes such an naming

convention will let you know when such a type change is occuring.

Because type changes, such as from a LONG to an INTEGER, from DOUBLE to
FLOAT, can introduce errors, such a convention can help make such

changes explicit.

However if you want to change an implementation, from say an INTEGER to
a LONG, then you have to change the name everywhere. If you want to
make subtle distinctions, between an INTEGER and a LONG, between
scalars and arrays, etc. a large portion of the name is occupied by
unpronounceable gibberish. | am not a fan of the Hungarian notation.

>
> For the most part, type checking and even arguement checking simply

> aren't an issue.
>

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1793
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8316#msg_8316
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8316
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

| would disagree with this blank statement. | have been burned too many
times trying to maintain other's code that played too fast and loose

with dynamic typing. | would say however that it is not just dynamic
typing, but its interaction with some coding styles that is a problem.
There is a mistaken impression that reusing a name for multiple
purposes can result in a performance or space savings. As a result,
some programmers use names inappropriately to mean multiple things. It
is one thing to use the same name, say data, for byte data and the
floating point data that results after the appropriate calibration has

been applied, it is another to use the name, say array, arbitrarilly

within a set of code to represent any possible array.

Note that while | can accept using the same name for related
guantities, | would prefer however not to use the same name for
calibrated and uncalibrated data. My preferred style might be

final_data = Calibrate(Temporary(raw_data), calibration_data)
if raw_data is not going to be used subsequently.
<snip>

There are several software engineering issues that do arise:

>
>
>
>
> 1. As mentioned above, when you operate on arguements of a
> function or procedure, you are also operating on the values in the

> calling program. C/C++ ordinarally make local copies of scalar

> values. This is one of the many ways in which IDL was designed to
> be Fortran-like, not C-like.

Try to avoid changes in the types of arguments as it typically
represents a change in the meaning that is not obvious in the calling
code. Try to avoid modifying arguments to functions, as opposed to
procedures, as functions that modify their arguments is often
counterintuitive and can result in subtle errors.

2. Integer arithmetic overflows and underflows are not detected.
For example, 1024*1024 would yield 0 on most platforms, because
small integers are stored in 16 bits, and 16 bit arithmetic on

almost all modern computers is actually arithmetic modulo 2716 (if
you think about it, that is even true of two's complement signed
integers). That "defect" is also true of most C compilers, by the
way--in fact it is common C programming practice to take advantage
of that. (Some Fortran compilers have a switch which lets them
detect that sort of error--a good advantage of Fortran :-).

VVVVYVVYVYVYVYV

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Note also that by default IDL integers are 16 bit not 32 bit. This can
result in some subtle errors. It is good practice to make every integer
constant a long by appending an L, (and hence making the associated
varibale a long) unless you are certain that only 16 bits are

necessary.

>

> <snip>

>

> 4. Argument checking is mostly not a problem, since it mostly just
> leads to run-time errors when you try to use them. If your calling
> program has more arguments than the called program, or includes
> keyword arguments that the called program is missing, there will be
> arun time error. If the reverse is true, there will be no error.

> However, the unspecified variables will be undefined--that is

> n_elements(variable)

> will be 0--see variable d earlier in this post.

Mostly but not always not a problem. | have been burned when say a
program assumes that an argument is a long and say has
a=-a+1L

that converts an integer array to a long array and exceeds memory
limits, (very rare)

or an input that is a byte array where something like
a=a"2

causes an undetected overflow for BYTE arrays that would not occur for
a = LONG(TEMPORARY (a))"2

Note these and other errors are contest dependent, and are best
addressed by good documentation not naming conventions.

> <snip>

William B. Clodius Phone: (505)-665-9370

Los Alamos Nat. Lab., NIS-2 FAX: (505)-667-3815
PO Box 1663, MS-C323 Group office: (505)-667-5776
Los Alamos, NM 87545 Email: wclodius@lanl.gov

Page 3 of 3 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

