
Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by m_schellens on Thu, 21 Feb 2013 13:15:33 GMT
View Forum Message <> Reply to Message

On Feb 21, 10:33 am, fawltylangu...@gmail.com wrote:
>  On Thursday, February 21, 2013 5:58:36 AM UTC+1, Mark Hadfield wrote:
>>  The routine below creates up a long-integer array with one million elements, either as a
variable or as a tag embedded in a structure, then loads data values one at a time in a loop.
> 
>>  On IDL 8.1.0 (Windows, 64-bit) loading the data into the bare array took 0.047s (who said IDL
loops were slow?) and loading the same data into the structure took 0.465s, as the following
session log indicates:
> 
>>  IDL> mgh_test_structure, USE_STRUCTURE=0
> 
>>  IDL 8.1: loading 1000000 long-integer values into bare array took 0.0470 s
> 
>>  IDL> mgh_test_structure, USE_STRUCTURE=1
> 
>>  IDL 8.1: loading 1000000 long-integer values into structure-field array took 0.4800 s
> 
>>  On IDL 8.2.2, loading the data into the bare array took 0.050s and loading it into the structure
took so ridiculously long that I aborted it and tried again with a smaller number, eventually finding
that 10000 (10^4) elements took 0.062s and 100000 (10^5) took 7.56s
> 
>>  IDL> mgh_test_structure, USE_STRUCTURE=0
> 
>>  IDL 8.2.2: loading 1000000 long-integer values into bare array took 0.0500 s
> 
>>  IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=10000
> 
>>  IDL 8.2.2: loading 10000 long-integer values into structure-field array took 0.0620 s
> 
>>  IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=100000
> 
>>  IDL 8.2.2: loading 100000 long-integer values into structure-field array took 7.6540 s
> 
>>  The super-linear slowdown with IDL 8.2.2 suggests that a temporary copy of the data is being
produced every time the data is accessed. Why would this be? Is there a syntax that will avoid it?
> 
>>  I ran into this problem with some actual code of mine and rewrote it so that the structure is
built after the data are loaded, not before. (This is probably not a bad thing to do in any case.) I
wonder if all such cases can be avoided with a simple rewrite?
> 
>>   ------------------------------------------------------------ ------
> 
>>  pro mgh_test_structure, N_DATA=n_data, USE_STRUCTURE=use_structure
> 

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5313
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83339#msg_83339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>     compile_opt DEFINT32
> 
>>     compile_opt STRICTARR
> 
>>     compile_opt STRICTARRSUBS
> 
>>     compile_opt LOGICAL_PREDICATE
> 
>>     if n_elements(n_data) eq 0 then n_data = 1000000
> 
>>     if keyword_set(use_structure) then begin
> 
>>       my_struct = {data: lonarr(n_data)}
> 
>>       t0 = systime(1)
> 
>>       for i=0,n_data-1 do my_struct.data[i] = i
> 
>>       t1 = systime(1)
> 
>>       fmt = '(%"IDL %s: loading %d long-integer values into ' + $
> 
>>             'structure-field array took %0.4f s")'
> 
>>       print, FORMAT=fmt, !version.release, n_data, t1-t0
> 
>>     endif else begin
> 
>>       my_data = lonarr(n_data)
> 
>>       t0 = systime(1)
> 
>>       for i=0,n_data-1 do my_data[i] = i
> 
>>       t1 = systime(1)
> 
>>       fmt = '(%"IDL %s: loading %d long-integer values into ' + $
> 
>>             'bare array took %0.4f s")'
> 
>>       print, FORMAT=fmt, !version.release, n_data, t1-t0
> 
>>     endelse
> 
>>  end
> 
>  This is probably related to the dot operator overloading: a.b can be object.method or struct.tag,
and it can be resolved only at run time.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


> 
>  regards,
>  Lajos

But of course you know that the code used here:

my_struct.data[i] = i

is unambiguous for the dot operator and can be resolved at compile
time.

Not sure about the [] operator though (_overloadBracketsLeftSide).
If IDL 8.2.2 considers this overload for objects within structures
(which IDL 8.1 doesn't), that could be a reason.

Regards,
Marc

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

