
Subject: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by Mark[1] on Thu, 21 Feb 2013 04:58:36 GMT
View Forum Message <> Reply to Message

The routine below creates up a long-integer array with one million elements, either as a variable
or as a tag embedded in a structure, then loads data values one at a time in a loop.

On IDL 8.1.0 (Windows, 64-bit) loading the data into the bare array took 0.047s (who said IDL
loops were slow?) and loading the same data into the structure took 0.465s, as the following
session log indicates:

IDL> mgh_test_structure, USE_STRUCTURE=0
IDL 8.1: loading 1000000 long-integer values into bare array took 0.0470 s
IDL> mgh_test_structure, USE_STRUCTURE=1
IDL 8.1: loading 1000000 long-integer values into structure-field array took 0.4800 s

On IDL 8.2.2, loading the data into the bare array took 0.050s and loading it into the structure took
so ridiculously long that I aborted it and tried again with a smaller number, eventually finding that
10000 (10^4) elements took 0.062s and 100000 (10^5) took 7.56s

IDL> mgh_test_structure, USE_STRUCTURE=0
IDL 8.2.2: loading 1000000 long-integer values into bare array took 0.0500 s
IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=10000
IDL 8.2.2: loading 10000 long-integer values into structure-field array took 0.0620 s
IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=100000
IDL 8.2.2: loading 100000 long-integer values into structure-field array took 7.6540 s

The super-linear slowdown with IDL 8.2.2 suggests that a temporary copy of the data is being
produced every time the data is accessed. Why would this be? Is there a syntax that will avoid it?

I ran into this problem with some actual code of mine and rewrote it so that the structure is built
after the data are loaded, not before. (This is probably not a bad thing to do in any case.) I wonder
if all such cases can be avoided with a simple rewrite?

 -- ------

pro mgh_test_structure, N_DATA=n_data, USE_STRUCTURE=use_structure

 compile_opt DEFINT32
 compile_opt STRICTARR
 compile_opt STRICTARRSUBS
 compile_opt LOGICAL_PREDICATE

 if n_elements(n_data) eq 0 then n_data = 1000000

 if keyword_set(use_structure) then begin
 my_struct = {data: lonarr(n_data)}

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35155&goto=83341#msg_83341
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83341
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 t0 = systime(1)
 for i=0,n_data-1 do my_struct.data[i] = i
 t1 = systime(1)
 fmt = '(%"IDL %s: loading %d long-integer values into ' + $
 'structure-field array took %0.4f s")'
 print, FORMAT=fmt, !version.release, n_data, t1-t0
 endif else begin
 my_data = lonarr(n_data)
 t0 = systime(1)
 for i=0,n_data-1 do my_data[i] = i
 t1 = systime(1)
 fmt = '(%"IDL %s: loading %d long-integer values into ' + $
 'bare array took %0.4f s")'
 print, FORMAT=fmt, !version.release, n_data, t1-t0
 endelse

end

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

