
Subject: Re: Sorting a matrix
Posted by Jeremy Bailin on Fri, 01 Mar 2013 16:28:07 GMT
View Forum Message <> Reply to Message

On 3/1/13 7:45 AM, Mats Lï¿½fdahl wrote:
> I'd like to sort a matrix M in such a way that the order of the rows is determined by the value in
the first column. When the first column values are the same, the second column should be used,
etc.
>
> Something like Craig Marqwardt's multisort
(http://cow.physics.wisc.edu/~craigm/idl/down/multisort.pro), with M[0,*] used as key1, M[1,*] as
key2, etc. But without actually having to specify the keys one by one. (Never mind which index
counts as the column index :o)
>
> As the matrices I have in mind right now are integer arrays and do not have that many possible
values (just -1,0,1), I thought about turning the matrix into a 1D string array with the length of each
string equal to the number of columns and translating the column values into characters in the
string, like A for -1, B for 0, C for 1, and then sorting the string array. But I'd prefer a more general
program, in case there is one out there.
>
> Pointers, ideas?
>

I've done something like this before by generating a single unique
index... something like this:

matrix = [[4,5,6], [4,6,8], [2,3,4], [4,6,7]]

matrixshape = size(matrix, /dimen)
; this gives you the range of each column:
matrixord = lonarr(matrixshape)
for i=0l,matrixshape[0]-1 do matrixord[i,*] = ord(matrix[i,*])
ordmax = max(matrixord, dimen=2)

; what do you need to multiply by to get a unique range?
column_multiply = [reverse(product(reverse(ordmax[1:*]+1), /int,
/cumul)), 1]

; create a unique key and sort on it
sortkey = total(matrixord * rebin(column_multiply,matrixshape, /sample),
/int, 1)
newmatrix = matrix[*, sort(sortkey)]

IDL> print, newmatrix
 2 3 4
 4 5 6
 4 6 7
 4 6 8

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35157&goto=83422#msg_83422
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83422
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

You'll need ORD(), which is part of JBIU which is currently inaccessible
because I'm in the process of moving domains. But here's a stub:

function ord, values

nvalues=n_elements(values)
sortvalues = sort(values)
uniqvalues = uniq(values[sortvalues])

nuniq = n_elements(uniqvalues)
ordlist = lindgen(nuniq)

; this is basically the histogram(total(/cumulative)) trick
h = histogram(uniqvalues,bin=1,min=0,reverse=ri)
outp = lonarr(size(values, /dimen))
outp[sortvalues] = ordlist[ri[0:nvalues-1]-ri[0]]

return, outp

end

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

