Subject: Re: Color Frustration
Posted by J.D. Smith on Sun, 02 Mar 1997 08:00:00 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

Right-oh. Get rid of them. Completely. Do away with them. This is
the thing that is frying your goose (er, something!).

No way you should have TVLCT, r, g, b, /Get *AND* a common
block. Stuff and nonsense. One or the other, my man. And | say,
chuck the block.
All this copying to and fro is doing you in. Putting you under, so
to speak. Casting stars in your eyes, if you catch my drift. Colors
floating about.
You want colors, go *get* them:

TVLCT, r, g, b, /IGET
You want to load them, load them:

TVLCT,r, g, b
Or, what | prefer:

LOADCT, 5, NColors=200, Bottom=10 ; or whatever,

But don't be messin' around with no *common* block. No, sir, you're
better than that! Steer clear of that riff-raft.

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

>> Well, if you made it this far, it's a small miracle,and a testament to

> your IDL
>> fanatasism.
>

> Do you believe | am not only reading this, but responding after a six-pack
> and working 14 hours on my IDL manual today. | have to *seriously* get a life!
>

>> And yes, David, it is a "fantastic story", but aren't all the interesting
ones?

>

>

> Yes, indeed. And this one has cheered me up more than most. :-)
> ['ll buy the beer next time | see you , JD!
>
>
>
>

Cheers!

David

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5559&goto=8367#msg_8367
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8367
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Well, I have finally figured out what was wrong, and | should have suspected it
from the beginning. It's not the use of the color common block, which, as it
turns out, | actually do need, in order to set my plotting color into the

"original" color vectors (though | found a cleaner way to implement it). This
allows the user to pick any color table he wants,and stretch it and chop it to
his hearts content, without affecting my green over-plotting color. More on
this later.

The real culprit is the XOR graphics_function mode. | was temporarily thrown
off the trail by my unorthodox use of the colors common block.

The scenario is this: A zoom rubber band is drawn with the XOR mode, but since
| hadn't anticipated all uses of the draw widget when | wrote it, | tried to

optimize things by setting XOR when the user first clicked (initiating the zoom
box process), and then unsetting it only after the user released, with

arbitrarily many zoom boxes drawn (with XOR) in between. The
DEVICE,set_graphics call is actually pretty slow, and so this was speeding
things up a good bit. The problem is, if you use this widget together with any
others that do any drawing (which | am in this case), you're going to run into
troubles. It sounds obvious, but it is somewhat subtle, since what is critical

is the order in which events arrive down the pipeline. Since this is not always
apparent, | would reccommend that if you use the XOR mode, set it back to copy
immediately after every use, e.g., drawing your selection rubber band. This
does incur a performance penalty, but ensures you won't run into these
difficulties. This is the only guaranteed way to ensure that the XOR mode (or
any other mode for that matter) doesn't "leak” out into the rest of your widget
environment. And the wierd behavior of graphics_function leakage is somewhat
unpredictable, since the ordering of events is not always obvious. What seems
like a perfectly self-contained application of XOR may not remain so when widget
are teamed up!

A side note on the use of the colors common block: The difficulty is that
setting green with:

tvict,0B,255B,0B,!D.N_COLORS-1 ;load green into top color
doesn't affect the common block variables (only the device's color tables). Any
subsequent call to stretch, which uses the colors block original variables
(r_orig etc.) to construct the current ones (r_curr etc.), will obliterate your
green, *unless* it is set into the original variables. In addition, a call like

LOADCT, 5, NColors=200, Bottom=10

will similarly lose the green, since it sets the variables with:

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

r_orig(cbot) =r ;set a portion of r_orig with loaded table
g_orig(cbot) =g

b_orig(cbot) = b

r_curr =r_orig

g_curr = g_orig

b _curr=b_orig

tvict,r, g, b, cbot

As you can see, even if r,g, and b are only 10 elements vectors, the current
color vectors will be overwritten with the *entire* original ones. The only

option is to set the green into the original, and then reset the originals after

the widget dies, and the only way to accomplish this is to deal with the common
block directly.

Of course, the other option is to maintain a single colormap during your
widget's lifetime, but this limits the user's ability, in my application, to
explore that data.

A further application of this technique, which I am currently putting some

thought into, would allow the total colormap to be chopped up into as many
smaller colormaps as you want, each of which can be stretched and manipulated
(e.g. loading new color tables into) independent of the rest. Then you could
have two (or more) images with different colormaps, and a few colors for
overplotting, and a colormap tool that could use the active image to determine
which sub-colormap to display and edit. Cool, eh?

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

