
Subject: Re: Common block conumdrum
Posted by Struan Gray on Wed, 05 Mar 1997 08:00:00 GMT
View Forum Message <> Reply to Message

David Foster replies to:

> Daniel Williams:
>>
>> However, when creating new programs, I often want to
>> change the definition of the common block as the program
>> developes. How can I do this, short of exiting IDL and
>> starting over?
>
> I would strongly suggest that you follow the example
> presented in the User's Guide, Ch. 21 "Writing a Compound
> Widget", and store the "state" information in the uvalue of
> the first child of your main base.

 This works but has it's own problems. I often need to have the
state information when the widget is killed so that I can save
parameters and variables to disk or pass a response to another widget.
 David's technique works well if you can be sure that the user will
only ever kill the widget with 'close'/'quit'/'cancel' buttons, but if
the widget can be killed another way (with the xmanager tool or via a
close box provided by the operating system's window manager) I find
that by the time my widget knows it is being killed only the top level
base remains and my state information is lost.

 I get round this (and the original problem of wanting to change
data structures in common blocks) by keeping common variables and
state information in linked lists of handles. IDL handles have lots
of built in funtions to define trees and lists so it is really easy to
build and modify data structures on the fly.

 I tend to use what I call a 'parameter', which is a pair of
handles, one pointing to the data and another pointing to a string
which contains the parameter name. The data handle is declared as a
child of the name handle and the name handle is part of a linked list
or a tree of handles all linked back to a master handle whose value is
stored in a variable of type long. I have a bunch of utility routines
to create, delete, change and move parameters, all of which accept the
name and some data so the code is really easy to read. One nice side
effect is that the entire list of parameters can be deleted and their
associated memory reclaimed just by freeing the master handle.

 If the parameters are needed by lots of program units (for example
working directories, user information and graphics defaults) I create

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5550&goto=8427#msg_8427
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8427
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

a system variable for the master handle. Otherwise a common block can
hold one or more master handles, which has the advantage that the
'common' statements in the code make dependencies explicit.

 To get round the widget problem I use the user value of the main
base widget as a master handle, which can be retreived and the state
information read even in the cleanup routine called by the xmanager.
Other widgets who want to use the user value for their own data have
to use the paramater mechanism too, but that places no real
restrictions on what data they can store there so for me the 'bad'
coding is worth doing.

Struan

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

