Subject: Re: efficient kernel or masking algorithm? UPDATE Posted by PMan on Tue, 23 Jul 2013 20:35:25 GMT

View Forum Message <> Reply to Message

```
On Monday, February 26, 2001 10:38:06 AM UTC-5, Martin Downing wrote:
> "John-David Smith" <jdsmith@astro.cornell.edu> wrote in message
> news:3A99C6B4.10549265@astro.cornell.edu...
>> P.S. I think I originally got the idea from sigma_filter.pro, a NASA
> library
>> routine, dating back to 1991. It's chock-full of other good tidbits too.
>> Thanks Frank and Wayne!
>
> Hi John,
> Just checked the file SIGMA_FILTER.pro at
http://idlastro.gsfc.nasa.gov/ftp/pro/image/?N=D
> I really must spend more time browsing these great sites.
> The code is similar, however it does not calculate the true variance under
> the mask
> they calculate for a box width of n, (ignoring centre pixel removal):
  mean im=(smooth(image, n))
 dev_im = (image - mean_im)^2
 var_im = smooth(dev_im, n)/(n-1)
 -----
> This is not the true variance of the pixels under the box mask, as each
> pixel in the mask is having a different mean subtracted.
i.e (read this as a formula if you can!)
  Pseudo Variance = SUM ij ( (I(x+i,y+j) - MEAN(x+i,y+j)^2)/(n-1)
>
 instead of true variance:
          Variance = SUM ij ( (I(x+i,y+j) - MEANxy)^2) /(n-1)
>
> which can be reduced to : {(SUM ij ( ( I(x+i,y+j)^2 ) - (SUM ij
 I(x+i,y+j) \ ^2)/n \ /(n-1)
> hence the non loop method we use below:
 -----
> ; calc box mean
> mean im = smooth(image, n)
> ; calc box mean of squares
> msq im = smooth(image^2, n)
> ; hence variance
> var_im = ( msq_im - mean_im^2) * (n/(n-1.0))
> cheers
> Martin
>
```

- > PS: Sorry about my before-and-after-coffee postings this morning, outlook
- > decided to post my replies whilst I was still pondering how kind I've
- > killed that *feature* now:)

n seems to mean two things in your code: in the smooth function it is the window width and in your final variance calculation line it means number of samples. These should not be the same. If n is window size then the final line should read:

; hence variance var_im = (msq_im - mean_im^2) * (n*n/((n*n)-1.0))

Right? Or did I misunderstand something?