
Subject: Re: Modifying Arrays and Structures in HASH's (hint: you can't)
Posted by m_schellens on Mon, 29 Jul 2013 11:24:01 GMT
View Forum Message <> Reply to Message

Am Montag, 29. Juli 2013 11:44:14 UTC+2 schrieb fawltyl...@gmail.com:
> On Monday, July 29, 2013 10:46:36 AM UTC+2, mschellens wrote:
>
>
>
>> As of IDL 8.0, this is not correct. An IDL LIST is really a sinlge linked list made up of (PTR)
heap variable nodes (IDL_CONTAINER_NODE). The IDL_CONTAINER::GET function creates
then the array.
>
>>
>
>> But your method works, as the (copied) pointers access the same heap variables. This is also
the core of the mechanism I suggested for _OVERLOADBRACKETSLEFTSIDE.
>
>>
>
>> Also note, that at least with HEAP the IDL_CONTAINER::GET functionality cannot work
anymore (as you cannot pick the right element).
>
>>
>
>> And it is of course as well not efficient, to convert the complete container to a pointer array in
order to left-access one element.
>
>>
>
>> And the call to GET is almost as ugly as copying out one element, left-accessing it and
copying it back.
>
>>
>
>
>
> With huge list elements, copying out and back is very unefficient, creating a pointer array is
much faster.
>
>
>
> I do not understand the idea behind list. If it is a linked list, then accessing elements through
subscripting is O(n) vs. O(1) in arrays. This makes lists practically unusable.
>
>
>
> Try this test program to access the last element in a list:

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5313
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33789&goto=85362#msg_85362
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85362
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>
> pro list_test
>
> l=list(1,2,3)
>
>
>
> t=systime(1)
>
> for j=1,10l^6 do x=l[-1]
>
> print, " 3 elements: ", systime(1)-t
>
>
>
> for j=4,10l^3 do l.add, j
>
>
>
> t=systime(1)
>
> for j=1,10l^6 do x=l[-1]
>
> print, " 10^6 elements: ", systime(1)-t
>
>
>
> end
>
>
>
> IDL 8.2.3:
>
>
>
> 3 elements: 7.6518829
>
> 10^6 elements: 47.781787
>
>
>
> GDL CVS:
>
>
>
> 3 elements: 0.5020251

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> 10^6 elements: 44.200854
>
>
>
> FL 0.79.25:
>
>
>
> 3 elements: 0.044948101
>
> 10^6 elements: 0.042613983
>
>
>
>
>
> My pointer array based LIST implementation is about 10-150x faster for the small list, and more
than 1000x faster for the large list.
>
>
>
> regards,
>
> Lajos

I would like to emphasize, that I revided this thread for the suggestion about
_OVERLOADBRACKETSLEFTSIDE. This is not limited to a particular container type.
What do you think about it?

The strength of a LIST is the deletion and insertion of elements.
Particular at the beginning or at the end (O(1)).
Not the traversal, what you measured.
I am sure, one can build an example, where a list implementation based on an array will loose
against a real linked list. What if you fill the complete LIST from the left (like:
list.ADD,element[i],0)?
For an array based LIST, even as you demonstrate that it is for some cases more efficient, one
could say: Why not using a PTR array then directly?
Ok, you got some comfort functions. Maybe there is even room (or need) for an array based
container with ADD, REMOVE,
But I think if the user uses a LIST he possibly really want one.

Regards,
Marc

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

