Subject: Re: Modifying Arrays and Structures in HASH's (hint: you can't)
Posted by m_schellens on Mon, 29 Jul 2013 11:25:48 GMT

View Forum Message <> Reply to Message

Am Montag, 29. Juli 2013 13:24:01 UTC+2 schrieb mschellens:

> Am Montag, 29. Juli 2013 11:44:14 UTC+2 schrieb fawltyl...@gmail.com:

>

>> On Monday, July 29, 2013 10:46:36 AM UTC+2, mschellens wrote:

>

>>

>

>>

>

>>

>

>>> As of IDL 8.0, this is not correct. An IDL LIST is really a sinlge linked list made up of (PTR)
heap variable nodes (IDL_CONTAINER_NODE). The IDL_CONTAINER::GET function creates

then the array.
>

>>

>

>>>

>

>>

>

>>> But your method works, as the (copied) pointers access the same heap variables. This is
also the core of the mechanism | suggested for OVERLOADBRACKETSLEFTSIDE.

>

>>

>

>>>

>

>>

>

>>> Also note, that at least with HEAP the IDL_CONTAINER::GET functionality cannot work

anymore (as you cannot pick the right element).
>

>>

>

>>>

>

>>

>

>>> And it is of course as well not efficient, to convert the complete container to a pointer array in
order to left-access one element.
>

>>

>

Page 1 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5313
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33789&goto=85363#msg_85363
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85363
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>

>>

>

>>> And the call to GET is almost as ugly as copying out one element, left-accessing it and
copying it back.

>

>>

>

>>>

>

>>

>

>>

>

>>

>

>> With huge list elements, copying out and back is very unefficient, creating a pointer array is
much faster.

>

>>

>

>>

>

>>

>

>> | do not understand the idea behind list. If it is a linked list, then accessing elements through
subscripting is O(n) vs. O(1) in arrays. This makes lists practically unusable.
>

>>

>

>>

>

>>

>

>> Try this test program to access the last element in a list:

>

>>

>

>>

>

>>

>

>> pro list_test

>

>>

>

>> |=list(1,2,3)

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>

>>

>> t=systime(1)

>>

>> for j=1,101"6 do x=I[-1]

>>

>> print, " 3 elements: ", systime(1)-t
>>

>>

>>

>> for j=4,101"3 do l.add, |

>>

>>

>>

>> t=systime(1)

>>

>> for j=1,101"6 do x=I[-1]

>>

>> print, " 1076 elements: ", systime(1)-t
>>

>>

>>

>> end

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>

>

>>

>

>>

>

>> |DL 8.2.3:
>

>>

>

>>

>

>>

>

>> 3 elements: 7.6518829

>
>>
>

>> 10”6 elements:

>
>>

>

>>

>

>>

>

>> GDL CVS:
>

>>

>

>>

>

>>

>

>> 3 elements: 0.5020251

>
>>
>

>> 1076 elements:

>
>>
>
>>
>
>>
>

>> FL 0.79.25:

47.781787

44.200854

Page 4 of 6 ----

Generated from

conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>

>

>>

>

>>

>

>> 3elements: 0.044948101

>

>>

>

>> 1076 elements: 0.042613983

>

>>

>

>>

>

>>

>

>>

>

>>

>

>> My pointer array based LIST implementation is about 10-150x faster for the small list, and
more than 1000x faster for the large list.
>

>>

>

>>

>

>>

>

>> regards,

>

>>

>

>> Lajos

>

>

>

> | would like to emphasize, that | revided this thread for the suggestion about
_OVERLOADBRACKETSLEFTSIDE. This is not limited to a particular container type.
>

> What do you think about it?

>

>

>

> The strength of a LIST is the deletion and insertion of elements.

Page 5 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Particular at the beginning or at the end (O(1)).

Not the traversal, what you measured.

VVVVYV

> | am sure, one can build an example, where a list implementation based on an array will loose
against a real linked list. What if you fill the complete LIST from the left (like:

list. ADD,element[i],0)?

>

> For an array based LIST, even as you demonstrate that it is for some cases more efficient, one
could say: Why not using a PTR array then directly?

>

> Ok, you got some comfort functions. Maybe there is even room (or need) for an array based
container with ADD, REMOVE,

But | think if the user uses a LIST he possibly really want one.

Regards,

VVVVYVYVYV

> Marc

Sorry, you did not measure the traversal, but the access to the last element (which is even worse
for lists)

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

