Subject: Re: Modifying Arrays and Structures in HASH's (hint: you can't)
Posted by m_schellens on Mon, 29 Jul 2013 22:46:21 GMT

View Forum Message <> Reply to Message

Am Montag, 29. Juli 2013 20:32:54 UTC+2 schrieb fawltyl...@gmail.com:

> On Monday, July 29, 2013 1:24:01 PM UTC+2, mschellens wrote:

>

>

>

>> | would like to emphasize, that | revided this thread for the suggestion about
_OVERLOADBRACKETSLEFTSIDE. This is not limited to a particular container type.
>

>>

>

>> What do you think about it?

FL> h=hash('s’, {i:0})
FL> h['s].i=123

FL> print, h

s:{ 123}

FL>

FL> I=list({i:0})

FL> 1[0].i=123

FL> print, |

{ 123}

VVVVVVVVVVVVVVVYVVYVYVYVYVYV

>
> | added these features when HASH and LIST were implemented, so | agree with you, this
should be the normal behavior for HASH, LIST and any future container.

Good. So what about OVERLOADBRACKETSLEFTSIDE ?

Does FL use the interface | suggested as well?

Would be in everybody's interest if all implementations are compatible.
Unless you have (or anybody else has) a better idea.

>> The strength of a LIST is the deletion and insertion of elements.

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5313
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33789&goto=85376#msg_85376
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85376
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>> Particular at the beginning or at the end (O(1)).

>

>

>

> LIST::add, remove and access (subscripting) both have an index parameter, so the interface is
that of a random access container, while the implementation is a sequential one. If the index
parameter is there, users will use it :-)

>

>> Not the traversal, what you measured.

>

>

>> | am sure, one can build an example, where a list implementation based on an array will loose
against a real linked list. What if you fill the complete LIST from the left (like:

list. ADD,element[i],0)?

>

Yes, this will be slow with an array implementation, but can be easily cured with a deque.

V V V V

Just that there is none...

>>

>

>> For an array based LIST, even as you demonstrate that it is for some cases more efficient,
one could say: Why not using a PTR array then directly?

>

>

>

> The array management is hidden in LIST.

| just pointed out that in IDL a LIST is not a wrapper for a PTR array.
An IDL expert would probably write an IDL program using LISTs, which might then perform not
optimal under unexpected container time guarantees. He would possibly even derive from LIST...

>> Ok, you got some comfort functions. Maybe there is even room (or need) for an array based
container with ADD, REMOVE,

>

>

>

>> But | think if the user uses a LIST he possibly really want one.

>

>

>

> Are you sure? :-)

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Perfect! Not anymore :-)

Regards,
Marc

Page 3 of 3 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

