Subject: Re: Keyboard/Input focus: MS windows vs linux
Posted by David Fanning on Thu, 15 Aug 2013 01:13:09 GMT

View Forum Message <> Reply to Message

Paddy Leahy writes:

>

> ['ve run into an incompatibility between windows and linux in the handling of focus events. Can
anyone think of a workaround for the following?

>

> I'm developing a widget application with a draw widget. To allow the user to use standard IDL
direct graphics while the application is running, it swaps the graphics state, including colour tables
and active window, every time it gains or loses keyboard focus.

>

> The draw widget has motion events enabled. Just as one would wish, IDL generates these as
soon as the cursor is positioned over the widget, even if the widget does not have focus. But this
does mean that the event handler has to look out for this condition, swap the graphics state, and
explicitly grab focus using:

>

> WIDGET_CONTROL, widget_id, /INPUT_FOCUS

>

> Under linux, if widget_id is the draw window, this generates a KBRD_FOCUS_EVENT with
ENTER = 1 which reaches the top-level base event handler, and the system knows that the
widget has gained focus, so when a different window is clicked it generates a

KBRD_FOCUS_ EVENT with ENTER = 0, cueing a graphics state swap.

>

> But under MS windows, no KBRD_FOCUS_EVENT is generated (at least, none reaches the
top-level handler) and the system still regards the focus as being elsewhere, so the graphics state
is not swapped back when focus is transferred to another window.

>

> On the other hand, if widget_id is the top-level base, windows does, but linux

> does not, generate a KBRD_FOCUS_EVENT. Unfortunately, even then windows doesn't seem
to recognise that the widget has focus (unless I click on it), so no ENTER = 0 event is generated
when | click elsewhere.

>

> I'm running IDL 7.0 under windows. The behaviour under linux is the same for IDL 7.0 and 8.2,
and for different x-windows systems, so | think the key factor is unix vs microsoft.

I'd say you were probably hosed. But, this seems a little clunky to
mean, and I'd do this another way. I'd store the graphics state in the
user value of the draw widget. Then, at the time you make the draw
widget the current graphics window to draw into it, restore it's graphic
state. That way it is always ready to go when you want to use it.

Cheers,

David

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35841&goto=85528#msg_85528
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85528
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

