
Subject: Re: structures?
Posted by spluque on Thu, 26 Sep 2013 14:42:55 GMT
View Forum Message <> Reply to Message

On Wednesday, September 25, 2013 4:57:48 PM UTC-5, spl...@gmail.com wrote:

>  
>>  Hi Seb,
>  
>>  
>  
>>  it seems to me that you might need some dynamic data structure, because there might be a
different number of rows needed for each day. Also, a structure array is represented internally as
just one "IDL Variable" and it needs to be stored in one solid block of computer memory. This
could be quite resource-unfriendly if it's going to be very large (say, hundreds of MB). Especially, if
you decide to enlarge the array, a new solid block of memory has to be allocated, the contents
copied there and eventually the original memory can be freed.
>  
>>  
>  
>>  You could use pointer array instead, but I recommend using the new dynamic data types
introduced in IDL 8, HASH() and LIST(). I guess they work internally through pointers, so each
part of the large data structure can be at different place in the memory, which is certainly more
resource-friendly. However, the way you work with HASH() or LIST() is in many aspect similar to
using normal arrays, which is also quite user-friendly (unlike using pointers).
>  
>>  
>  
>>  Try looking to the IDL Help at these two data types and see if it suits to you.
>  
>  Thank you Matej, hashes did turn out to be a great option for this.  Their flexibility is impressive.
 I am using them to create vectors corresponding to fields in a CSV file.  I eventually need to write
the data into a new CSV file.  I see that the WRITE_CSV procedure can do this, and can take a
structure as input.  The toStruct method for hashes comes in handy.  However, the order of the
tags is completely arbitrary.  Someone has made available a rather long script (
http://code.google.com/p/sdssidl/source/browse/trunk/pro/str uct/reorder_tags.pro?r=72) to
re-order tags in a structure, but was wondering whether there is a simpler/better way to do this.
>  

Suppose we have three vectors of data of the same length, all of which are in a hash.  We want to
create CSV files with these vectors, but each file would contain a subset of each vector.  This is
how I am doing this:

keys=['a', 'b', 'c']
n=20L
n_group=5L
ts=hash(keys, list(indgen(n), findgen(n), sindgen(n)))

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7872
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35889&goto=86047#msg_86047
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86047
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


FOR begi=0L, n - 1, n_group DO BEGIN
   endi=(begi + n_group - 1)
   ts_group=create_struct(keys[0], ts[keys[0], begi:endi])
   FOREACH fld, keys[1:*] DO BEGIN
      ts_group=create_struct(ts_group, keys[where(keys EQ fld)], $
                             ts[fld, begi:endi])
   ENDFOREACH
   write_csv, 'test.csv', ts_group
ENDFOR

In this example, we the full hash has three vectors, each with 20 elements, and we want to create
4 files with the same three vectors, but each containing 5 elemeents of the original.  We want to
keep the original order of the keys.  It seems rather contrived to have two loops here.  Is there a
better way to accomplish this?

Thanks,
Seb

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

