
Subject: Re: Need IDL 8 Help
Posted by kagoldberg on Sat, 25 Jan 2014 08:55:35 GMT
View Forum Message <> Reply to Message

Here's another, related way to do this: broadcast your message to all child objects, and let the
child objects decide if that message requires them to take action.

Suppose each message-able graphic object has a 'parent' keyword in the Init method where we
pass the parent object's reference. Every such object then knows its parent explicitly. (You could
store this information in the fields of the object, or only use it in the Init method.)

In their Init methods, objects call their parent's 'register' method, which simply stores the object
reference in a big hash or list. The only argument to 'register' is the child object's reference (i.e.
self, when you are within the Init method of the child).

Now, whenever the parent has ANY sort of relevant change (no matter the type) it tells every
registered object, with a foreach loop, calling the 'notify' methods of those objects. The parent
sends some kind of coded "type of change" or "type of message" information, plus whatever
relevant arguments are necessary to interpret the change. (Lots of ways to do this, obviously.)

Then within the 'notify' methods, it's up to each child to determine if the information it is given is
important to it, or if it should be ignored. I'd use a case statement in the 'notify' method to select
what to do with each possible kind of notification.

You give up a small amount of efficiency by broadcasting messages to objects that may not need
to know about them (since you're notifying all registered objects). BUT, you save yourself all of the
trouble of having to keep track of which objects need to be the recipients of what kinds of
information. That latter system could drive you mad, and I think that's the complexity that drove
your question.

Unless you have a huge number of child objects, messaging all of the registered objects will
happen so fast.

Another tip with object graphics and this messaging system you're creating is to delay Draw
updates until everyone has been messaged, then draw all at once. If every notification prompts a
re-draw, you're going to see a big slow-down.

If you code it right, you could make the notification recursive. So when an object is notified, it acts
on relevant information, and then passes the notification (or a modified notification) down it ITS
registered children. This makes notification distribution hierarchical, rather than flat.

Page 1 of 1 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7668
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36169&goto=87333#msg_87333
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=87333
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

