
Subject: "Numerical Recipes" implementation complaints
Posted by Wayne Landsman on Fri, 25 Apr 1997 07:00:00 GMT
View Forum Message <> Reply to Message

RSI is very careful when implementing the "Numerical Recipes in C"
functions to not modify the original C code. This is a good idea in
principle -- it means, for example, that users can use the NR book to
examine the IDL source code. But I think that when the code requires a
user-supplied function, then the required function should be IDL-like
and not C-like. Below are two examples:

1. The intrinisc QSIMP() function will integrate a user-supplied
function. This function must "accept a single *scalar* argument X and
return a *scalar* result (!!!)." It goes against all my IDL training
to write a function that does not accept a vector argument! More
important, it means that the intrinisc QSIMP() function is usually
slower -- sometimes much slower -- than a vectorized version coded in
the IDL language (such as available at
 http://idlastro.gsfc.nasa.gov/ftp/pro/math/qsimp.pro). This is
because, say, on the 16th iteration of the integration, the intrinsic
QSIMP function must make 32768 calls to the user-supplied function,
whereas a vectorized version makes one call with a 32768 element
vector.

2. In IDL V5.0B5, the Numerical Recipes version of the
Levenberg-Marquardt non-linear least squares fitting algorithm is
introduced as the intrinsic function LMFIT(). This function seems to be
more robust than CURFIT(), and I especially like the FITA keyword, which
lets users designate parameters as either fixed or free. But LMFIT()
wants the user-supplied function to return both the function value and
derivative *in a single vector*. This differs from CURVEFIT which
wants a user-supplied function to return the function value, and
optionally the derivative, in parameters. The ability to make the
derivative computation optional is what makes the CURVEFIT function
IDL-like. Some consequences of the LMFIT() choice of fitting function
are:

 (1) If we want to compare the CURVEFIT() and LMFIT() fitting results,
then we must write two different functions to do the same thing.

 (2) The /NODERIVATIVE option -- to automatically compute derivatives
numerically -- in CURVEFIT is not possible in LMFIT(). I usually use
non-linear fitting to fit numerical models to data, and it is not
possible to compute analytic derivatives. In CURVEFIT() I could just
set the /NODERIVATIVE keyword, and let the calling program do the
numerical derivatives, whereas for LMFIT() I must write the numerical
derivative computation inside each function.

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1864
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5827&goto=8830#msg_8830
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8830
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 (3) If I want to use a function for other purposes than LMFIT, then I
certainly do not want to have to compute the derivatives each time I
need the function value. (Yes, I know I could add a /NODERIVATIVE
keyword to the function, so that it would return garbage in the
derivative indicies of the output vector, but this is not aesthetically
very pleasing.)

Wayne Landsman landsman@mpb.gsfc.nasa.gov

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

