
Subject: Re: Multiplying very high with very low numbers: erfc * exp
Posted by tho.siegert on Wed, 16 Apr 2014 12:09:10 GMT
View Forum Message <> Reply to Message

On Thursday, April 3, 2014 3:21:31 PM UTC+2, alx wrote:
> On Thursday, April 3, 2014 11:35:10 AM UTC+2, tho.s...@gmail.com wrote:
>
>> Hello,
>
>>
>
>> for my MCMC fitting program, I need to evaluate functions of the form (Gaussian with a one
sided exponential tail towards lower x-values):
>
>>
>
>>
>
>>
>
>> f(a,b,c,d) * erfc(g(a,b,c,d)) * exp(h(a,b,c,d)) := X * Y * Z = F
>
>>
>
>>
>
>>
>
>> where f,g and h are certain functions of the parameters a,b,c and d.
>
>>
>
>>
>
>>
>
>> It almost always happens that the numbers of these three factors are like:
>
>>
>
>>
>
>>
>
>> F = X * Y * Z = 1e2 * 1e-999 * 1e1000 = 1e3
>
>>
>

Page 1 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8004
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36347&goto=88352#msg_88352
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=88352
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>
>
>> Which is a big problem since 1e-999 is represented as 0 and 1e1000 is represented as
infinity, thus the result being 0, infinity or nan, but definetly not 1e3.
>
>>
>
>> As a work-around, I went to log-space such that:
>
>>
>
>>
>
>>
>
>> F = exp(ln(F)) = exp(ln(X * Y * Z)) = exp(ln(X) + ln(Y) + ln(Z)) =
>
>>
>
>> = exp(ln(f(a,b,c,d)) + ln(erfc(g(a,b,c,d))) + ln(exp(h(a,b,c,d)))) :=
>
>>
>
>> := exp(Q + W + E)
>
>>
>
>>
>
>>
>
>> Q and E are no problem to evaluate since f() is just a rational function and ln(exp(h())) is just
h().
>
>>
>
>> However, W = ln(erfc(g())) contains the same problem as above. If g() is far negative from 0,
erfc(g()) is just 2 (and not e.g. 2 - 1e-99). If g() is far positive from 0, erfc(g()) is just 0, returning W
as -Inf (as erfc(g()) should actually be something like 1e-99).
>
>>
>
>>
>
>>
>

Page 2 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Now, I looked up several representations of the erfc() function in order to build something like
a lnerfc - function. I have chosen the erfcc() function in Numerical recipes, Chapter 6, Special
Functions (around page 214) which is also given in Wikipedia at
http://en.wikipedia.org/wiki/Error_function#Numerical_approx imation
>
>>
>
>> This approximation has two major advantages:
>
>>
>
>> 1) It is represented as proprotional to an exponential function, for which the ln can easily be
calculated.
>
>>
>
>> 2) The fractional error is "everywhere less than 1.2e-7".
>
>>
>
>>
>
>>
>
>> Including all these work-arounds, F = X * Y * Z can be calculated to a good enough precision
(for me).
>
>>
>
>>
>
>>
>
>> However (again), as you might already think of, it takes a while to calculate F. In a MCMC run,
this function has to be evaluated over and over again. If there is more than one such a function
present in my data (say N), I need to fit, i.e. evaluate something like:
>
>>
>
>>
>
>>
>
>> sum(F_i, i=0..N)
>
>>
>
>>

Page 3 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>> over and over again (typically N = 20..30).
>
>>
>
>>
>
>>
>
>> To put it in a nutshell:
>
>>
>
>> I am looking for a speed-up to calculate W = ln(erfc(g(a,b,c,d))).
>
>>
>
>> I know that I can calculate the erfc - function by:
>
>>
>
>> erfc(x) = 1 - sgn(x) * igamma(0.5,x^2)
>
>>
>
>> where igamma is the incomplete gamma-function.
>
>>
>
>> Unfortunately, there is no LNIGAMMA - function in IDL, as for the complete gamma-function
(LNGAMMA). As this does not necessarily have to work good then because of the "1 - ".
>
>>
>
>>
>
>>
>
>> I hope you understand the problem and are not overwhelmed by this wall of text.
>
>>
>
>> I appreciate any suggestions.
>
>>
>

Page 4 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>
>
>> Cheers,
>
>>
>
>> Thomas
>
>
>
> I am afraid that IDL will not be able to help you without some reformulation of your problem.
>
> In order to avoid underflow and overflow when computing each of your Y and Z functions, you
have to find a derived or approximated expression for their product, which indeed is finite and of
order about 10.
>
> You might for instance consider Rational Chebyshev approximations of X*Y, which are often
used for computing the "erfcx" function (i.e. exp(x^2)*erfc(x)), whose shape is not far from the one
you are dealing with.
>
> Hoping this can help you.
>
> alx.

On Thursday, April 3, 2014 3:21:31 PM UTC+2, alx wrote:
> On Thursday, April 3, 2014 11:35:10 AM UTC+2, tho.s...@gmail.com wrote:
>
>> Hello,
>
>>
>
>> for my MCMC fitting program, I need to evaluate functions of the form (Gaussian with a one
sided exponential tail towards lower x-values):
>
>>
>
>>
>
>>
>
>> f(a,b,c,d) * erfc(g(a,b,c,d)) * exp(h(a,b,c,d)) := X * Y * Z = F
>
>>
>

Page 5 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>
>
>> where f,g and h are certain functions of the parameters a,b,c and d.
>
>>
>
>>
>
>>
>
>> It almost always happens that the numbers of these three factors are like:
>
>>
>
>>
>
>>
>
>> F = X * Y * Z = 1e2 * 1e-999 * 1e1000 = 1e3
>
>>
>
>>
>
>>
>
>> Which is a big problem since 1e-999 is represented as 0 and 1e1000 is represented as
infinity, thus the result being 0, infinity or nan, but definetly not 1e3.
>
>>
>
>> As a work-around, I went to log-space such that:
>
>>
>
>>
>
>>
>
>> F = exp(ln(F)) = exp(ln(X * Y * Z)) = exp(ln(X) + ln(Y) + ln(Z)) =
>
>>
>
>> = exp(ln(f(a,b,c,d)) + ln(erfc(g(a,b,c,d))) + ln(exp(h(a,b,c,d)))) :=
>
>>

Page 6 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> := exp(Q + W + E)
>
>>
>
>>
>
>>
>
>> Q and E are no problem to evaluate since f() is just a rational function and ln(exp(h())) is just
h().
>
>>
>
>> However, W = ln(erfc(g())) contains the same problem as above. If g() is far negative from 0,
erfc(g()) is just 2 (and not e.g. 2 - 1e-99). If g() is far positive from 0, erfc(g()) is just 0, returning W
as -Inf (as erfc(g()) should actually be something like 1e-99).
>
>>
>
>>
>
>>
>
>> Now, I looked up several representations of the erfc() function in order to build something like
a lnerfc - function. I have chosen the erfcc() function in Numerical recipes, Chapter 6, Special
Functions (around page 214) which is also given in Wikipedia at
http://en.wikipedia.org/wiki/Error_function#Numerical_approx imation
>
>>
>
>> This approximation has two major advantages:
>
>>
>
>> 1) It is represented as proprotional to an exponential function, for which the ln can easily be
calculated.
>
>>
>
>> 2) The fractional error is "everywhere less than 1.2e-7".
>
>>
>
>>
>
>>
>

Page 7 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Including all these work-arounds, F = X * Y * Z can be calculated to a good enough precision
(for me).
>
>>
>
>>
>
>>
>
>> However (again), as you might already think of, it takes a while to calculate F. In a MCMC run,
this function has to be evaluated over and over again. If there is more than one such a function
present in my data (say N), I need to fit, i.e. evaluate something like:
>
>>
>
>>
>
>>
>
>> sum(F_i, i=0..N)
>
>>
>
>>
>
>>
>
>> over and over again (typically N = 20..30).
>
>>
>
>>
>
>>
>
>> To put it in a nutshell:
>
>>
>
>> I am looking for a speed-up to calculate W = ln(erfc(g(a,b,c,d))).
>
>>
>
>> I know that I can calculate the erfc - function by:
>
>>
>
>> erfc(x) = 1 - sgn(x) * igamma(0.5,x^2)

Page 8 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>> where igamma is the incomplete gamma-function.
>
>>
>
>> Unfortunately, there is no LNIGAMMA - function in IDL, as for the complete gamma-function
(LNGAMMA). As this does not necessarily have to work good then because of the "1 - ".
>
>>
>
>>
>
>>
>
>> I hope you understand the problem and are not overwhelmed by this wall of text.
>
>>
>
>> I appreciate any suggestions.
>
>>
>
>>
>
>>
>
>> Cheers,
>
>>
>
>> Thomas
>
>
>
> I am afraid that IDL will not be able to help you without some reformulation of your problem.
>
> In order to avoid underflow and overflow when computing each of your Y and Z functions, you
have to find a derived or approximated expression for their product, which indeed is finite and of
order about 10.
>
> You might for instance consider Rational Chebyshev approximations of X*Y, which are often
used for computing the "erfcx" function (i.e. exp(x^2)*erfc(x)), whose shape is not far from the one
you are dealing with.
>
> Hoping this can help you.
>

Page 9 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> alx.

Okay, since I already actually had a lnerfc function, but was too silly to make it work properly, i
post my solution:

function lnerfc, x, y

 a = [-1.26551223d, 1.00002368d, 0.37409196d, 0.09678418d, -0.18628806d, 0.27886807d,
-1.13520398d, 1.48851587d, -0.82215223d, 0.17087277d]

 t = 1d / (1d + 0.5d * abs(x))

 tau = t * exp(-x*x + (a[0] + t * (a[1] + t * (a[2] + t * (a[3] + t * (a[4] + t * (a[5] + t * (a[6] + t * (a[7] + t
* (a[8] + t * a[9]))))))))))

 y = alog(t) + (-x*x + (a[0] + t * (a[1] + t * (a[2] + t * (a[3] + t * (a[4] + t * (a[5] + t * (a[6] + t * (a[7] +
t * (a[8] + t * a[9]))))))))))

 lt0 = where(x lt 0d,/null)

 y[lt0] = y[lt0] + alog(2d / tau - 1d)

 return, y

end

It is again taken from Numerical recipes, Chapter 6.2, Special Functions, just translated to
logarithm space. This is indeed based on Chebyshev fitting. Thanks alx!

Regards,
Thomas

Page 10 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

