Subject: Re: Random-access of List() progressively slower for static list
Posted by Helder Marchetto on Mon, 05 May 2014 12:25:19 GMT

View Forum Message <> Reply to Message

On Monday, May 5, 2014 1:34:52 PM UTC+2, Tom Grydeland wrote:
> Hiall,
>

The following snippet demonstrates very peculiar complexity in IDL 8.2.2

V V.V VYV

>
> In the first part, exchanging active and commented-out equivalent code gives equally
unsatisfactory results in the list creation phase.

>
>
>
> List(), for all its nice properties, is not fit for (my) purpose in this version of IDL.
>
>
>
> Regards,
>
>
>
> Tom Grydeland, Norut
>
>
>
> oo Cuthere 5osnnnnnni
compile_opt idI2
N =200000L
M = 5000L

print, format='(%"Creating list of %d elements")’, N

values = List()

VVVVVVVVVVVVYVYVYVYVYV

Page 1 of 6 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7447
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36397&goto=88514#msg_88514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=88514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; values = List(length=N)

t0 = systime(/seconds)

for jj=0L, N-1 do begin

;; Nice and snappy

values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))

;; Excruciatingly slow

; values]jj] = List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))

if ~(jj mod M) then begin
tl = systime(/seconds)
print, format="'(%"Inserted %d elements, the last %d in %g seconds")', jj, M, t1-t0
t0=1t1

endif

endfor

itot = OL

ftot = 0.0

;; Now see how List() deals with random access
il = fix(randomu(seed, N) * N)

for jj = OL, N-1 do begin

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

itot += values]jj, 1, 0]

ftot += valuesjj, 2, 0]

if ~(jj mod M) then begin
tl = systime(/seconds)
print, format="'(%"Processed %d elements, the last %d in %g seconds")', jj, M, t1-t0
t0=1t1

endif

endfor

end

VVVVVVVVVVVVVVVVVYVYVYVYVYV

\Y
@)
c
—
=
@D
=
@D

Typical output (limited by my impatience):

Creating list of 200000 elements

Inserted O elements, the last 5000 in 0.00215101 seconds
Inserted 5000 elements, the last 5000 in 0.348531 seconds
Inserted 10000 elements, the last 5000 in 0.346365 seconds
Inserted 15000 elements, the last 5000 in 0.346398 seconds
Inserted 20000 elements, the last 5000 in 0.343561 seconds
Inserted 25000 elements, the last 5000 in 0.345163 seconds
Inserted 30000 elements, the last 5000 in 0.344774 seconds

Inserted 35000 elements, the last 5000 in 0.345832 seconds

VVVVVVVVVVVVVVVVYVYVVYVYVYVYVYVYV

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Inserted 40000 elements, the last 5000 in 0.346793 seconds
Inserted 45000 elements, the last 5000 in 0.345885 seconds
Inserted 50000 elements, the last 5000 in 0.347492 seconds
Inserted 55000 elements, the last 5000 in 0.34761 seconds
Inserted 60000 elements, the last 5000 in 0.347977 seconds
Inserted 65000 elements, the last 5000 in 0.349764 seconds
Inserted 70000 elements, the last 5000 in 0.354488 seconds
Inserted 75000 elements, the last 5000 in 0.354447 seconds
Inserted 80000 elements, the last 5000 in 0.354993 seconds
Inserted 85000 elements, the last 5000 in 0.355061 seconds
Inserted 90000 elements, the last 5000 in 0.355482 seconds
Inserted 95000 elements, the last 5000 in 0.355554 seconds
Inserted 100000 elements, the last 5000 in 0.354784 seconds
Inserted 105000 elements, the last 5000 in 0.355656 seconds
Inserted 110000 elements, the last 5000 in 0.35539 seconds
Inserted 115000 elements, the last 5000 in 0.356607 seconds
Inserted 120000 elements, the last 5000 in 0.356207 seconds
Inserted 125000 elements, the last 5000 in 0.356762 seconds
Inserted 130000 elements, the last 5000 in 0.42747 seconds
Inserted 135000 elements, the last 5000 in 0.356562 seconds
Inserted 140000 elements, the last 5000 in 0.356965 seconds
Inserted 145000 elements, the last 5000 in 0.357409 seconds
Inserted 150000 elements, the last 5000 in 0.356946 seconds

Inserted 155000 elements, the last 5000 in 0.356669 seconds

Page 4 of 6 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Inserted 160000 elements, the last 5000 in 0.356693 seconds
Inserted 165000 elements, the last 5000 in 0.356064 seconds
Inserted 170000 elements, the last 5000 in 0.357145 seconds
Inserted 175000 elements, the last 5000 in 0.356812 seconds
Inserted 180000 elements, the last 5000 in 0.35684 seconds
Inserted 185000 elements, the last 5000 in 0.358616 seconds
Inserted 190000 elements, the last 5000 in 0.357635 seconds
Inserted 195000 elements, the last 5000 in 0.358785 seconds
Processed 0 elements, the last 5000 in 0.365067 seconds
Processed 5000 elements, the last 5000 in 2.29138 seconds
Processed 10000 elements, the last 5000 in 5.68659 seconds
Processed 15000 elements, the last 5000 in 10.7704 seconds
Processed 20000 elements, the last 5000 in 24.9039 seconds
Processed 25000 elements, the last 5000 in 37.5853 seconds
Processed 30000 elements, the last 5000 in 46.8019 seconds
Processed 35000 elements, the last 5000 in 55.4 seconds

Processed 40000 elements, the last 5000 in 63.8799 seconds

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Processed 45000 elements, the last 5000 in 72.3194 seconds

Hi Tom,

I'm not in a position to answer your question, but | discussed lists with a friend who understands
what he's doing (at least that was the impression) and it all boils down to how lists are
implemented. In IDL you're looking at a "singly-linked list of pointers"” (from
http://www.exelisvis.com/docs/LIST.html). According to Wiki, lists of this type have advantages
and of course lots of disadvantages if compared to dynamic arrays:
http://en.wikipedia.org/wiki/Linked_list#Linked_lists_vs._dy namic_arrays

The performance difference between using values.add and values]jj] might be a direct reference
to the last element of the list, making therefore add faster. But that is just speculation. However, |
tested this using the following three different "add™:

Page 5 of 6 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))
values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1)), 0
values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1)), ji-1

The computation times are, hmm..., quite different:
Creating list of 20000 elements

Append processing time = 0.998

Insert at beginning processing time = 0.979

Insert at end processing time = 29.334

| used "only" 20000 elements because | waited too long for the last operation.

This just confirms that adding an element at the end of the list without specifying the position is
about as fast as at the beginning (within small error). But adding element at the end of the list is
sloooow.

For testing the randomness, | used ii[jj] instead of jj and made M=500 instead of 5000. This way |
get about 20 sec/500 operations.

| hope you'll find your answers in wiki or from the tests above. What I've learned (the hard way) is
that lists in IDL should not be used for doing what arrays can do. They should only takeover when
arrays don't work well (insert elements, changes of type or array extension).

Cheers,
Helder

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

