Subject: Re: Is it possible to speed up the Interpolate command?
Posted by Michael Galloy on Fri, 08 Aug 2014 00:42:44 GMT

View Forum Message <> Reply to Message

On 8/7/14, 4:11 pm, sim7w6@gmail.com wrote:
I've been stuck on figuring out how to speed up an interpolation
calculation and wondered if anyone has any suggestions?

Here's the situation:

| have a bunch (about 450,000) of 2d matrices that | need to
interpolate within. Within each of the matrices, I'm looking to
interpolate for 100 x/y combinations where | want values at points
(x_1,y 1), (x_2,y_2), etc. (I am not looking to regrid the data,

i.e., ldon't need x_1,y 2). The matrices are currently stacked in a
datacube (dimensions are 14 x 28 x 450000). Each of the matrices has
the same x/y locations for the points to be interpolated. | thereby
use "interpolate"” to interpolate each matrix for the 100 values and
then loop over the 3rd dimension. This utilizes the bilinear
interpolation. Though, | have the matrices stacked in the data cube,
| do not want a trilinear interpolation as the 3 dimension is
independent. Here's the current code:

for i=0, numlines-1 do begin
Values(*,i)=interpolate(datacube(*,*,i),x_loc,y_loc) endfor

Numlines is the n_elements(3rd dimension), which is the 450,000
referenced above. The x and y dimensions of the data cube are 14 and
28, respectively..

The interpolation is taking about 2 seconds to run. I'm looking to
find a way to trim it as much as possible...hopefully less than 0.1
seconds. This may be difficult given that the interpolation is
calculating 45,000,000 values.

Things I've tried: 1) I first removed the interpolation from the for
loop. However, the combination of that interpolation with reforming
the output result into the matrix | need requires this process to
actually take longer than the for loop above...this provides evidence
the existence of the for loop is not the rate limiting step.

2) | rearranged the datacube into a very large 2d matrix (basically
stacking in the 2nd dimension as opposed to creating the 3rd
dimension). This lead to the same calculation time as the original
way above, so no gains there..

| need a bilinear interpolation due to the first two dimensions being
linked so interpol will not work. | do not need regridded data, so |

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36566&goto=89242#msg_89242
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=89242
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

don't think that Krig2d or bilinear offer any help.

>
>

> | know that | can speed up the code by simply decreasing the size of
> the 3rd dimension and/or by interpolating for less than 100 values

> per matrix, but I'm trying to avoid this.
>
>
>
>
>

Any suggestions on how to calculate this faster?

Thank you for your time.

You could try GPULIDb; it has a GPU accelerated interpolation routine.
Demo at: http://www.txcorp.com/home/gpulib. (Full disclosure: | am the
product manager for GPULIb.) It only does bilinear interpolation, but it
sounds like you just want to do a stack of bilinear interpolations.

Mike

Michael Galloy

www.michaelgalloy.com

Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician

Tech-X Corporation

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

