Subject: Re: Curve Fitting to timeseries using a set of 8 sine and cosine functions Posted by Yngvar Larsen on Sat, 25 Oct 2014 15:59:25 GMT

View Forum Message <> Reply to Message

This is actually not a nonlinear system, but a linear one. Thus, in the general case where your sampling vector X is not regular, a linear least squares fit could be done easily with the pseudo inverse of the system matrix:

```
np = 160
                       ; Number of samples
nc = 4
                      : Number of even/odd terms
:: Irregular sampling points
x = 2*!dpi*randomu(seed, np)-!dpi
x = x[sort(x)]
;; Generate signal according to model
H = dblarr(np, 2*nc+1)
                            : System matrix
H[*,0] = 1
                       ; Constant term
for n=1,nc do begin
 H[*,n] = cos(n*x)
                         ; even terms
 H[*,n+nc] = sin(n*x)
                         ; odd terms
endfor
coeff = randomn(seed, 2*nc+1); Random coefficents
s = H\#coeff
                        ; signal
n = randomn(seed, np)
                             ; noise
;; least squares fit to signal:
Hpinv = invert(transpose(H)#H)#transpose(H); pseudoinverse of linear system
coeff est = Hpinv#s
print, 'RMS: ', sqrt(mean(abs(coeff_est - coeff)^2)); Exact within numerical precision
;; least squares estimate of system coefficients
coeff_est = Hpinv#(s+n)
print, 'RMS: ', sqrt(mean(abs(coeff_est - coeff)^2))
;; Fitted signal
s fit = H\#coeff est
plot, x, s+n, linestyle=1, thick=2.; Noisy observation
oplot, x, s, color='ff'x ; True signal
oplot, x, s_fit, color='ff00'x
                              ; Fitted signal
8<-----
```

If your sample vector X happens to be regular, the solution to your problem is actually nothing more than an FFT, and pick the 5 first complex coefficients. The first coefficient is the constant term A0 (not included in your problem), and real/imaginary parts of the following coefficients corresponds to cosine terms A1-A4 and the sine terms B1-B4, respectively.

```
Yngvar

On Saturday, 25 October 2014 07:47:17 UTC+2, siumt...@gmail.com wrote:

> I think you should try to be for specific to ask question here.

> Suppose I have a timeseries with the S size.

> I want to do nonlinear fitting to the timeseries using the following fourier series ( harmonic function)

> And I would find 8 coefficients such as An and Bn where n = 1,2,3,4

> That is.

> A1,A2,A3,A4

> B1,B2,B3,B4

> I have attempted to understand how it works mpfit by Craig and curvefit . Unfortunately, I did not because I am not IDL expert. So I posted this if anyone can help

> Best Wishes

> Best Wishes
```

> Thanks for you help