
Subject: Re: How Object-oriented?
Posted by Stein Vidar Hagfors H on Fri, 23 May 1997 07:00:00 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
>
> David Ritscher <david.ritscher@zibmt.uni-ulm.de> writes:
>
>> Is anyone ready yet to comment on how object- oriented IDL 5.0 is?
>
[..disclaimers from David Fanning snipped..]
>
>> OO has become a big buzz word, so it has become important to at least
>> give lip service to this concept. Can anyone comment on IDL 5.0?
>> Is it more on the lip-service level, or are the changes significant
>> enough that one can write real OO software?
>

I'm not an expert on OOP either, but coming from a university
that uses Simula as the introductory language in Computer
Science, I feel qualified to comment even though I have only
looked at the *documentation* for the OOP extensions of IDL 5.0.

(BTW - "Simula does it with CLASS" - invented around 1967(!) and
definitely a *huge* influence on the design of almost any
existing OO language - it has almost all of the features of
most "modern" OO languages, except operator overloading and
multiple inheritance)

Reading the documentation on the OOP stuff itself in IDL 5.0
doesn't take long - it's just a very few pages describing the
very basic ideas of OOP and the syntax used to implement
those ideas.

To anwer your question in short: The changes are *very* significant,
all you need to write a completely object oriented program
with an object oriented syntax is there - it's significant enough
that you could call it a "different" language altogether (OODL ?:-)
if it werent't for the fact that IDL 4.0 programs can still be run.

David Fanning:
> The pointer implementation is just outstanding ...

Unlike David Fanning, however, I'm not completely happy with the
pointer implementation - as far as I have understood it, you
have no "address of" operator. I.e., you cannot *mix*
normal and pointer variables in the sense that you cannot
make a pointer variable point to a normal variable like you

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2040
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5957&goto=9023#msg_9023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

can in e.g., C, and thus change (or read) the contents of that
variable by using the pointer.

This increases the amount of work that needs to be done to
make existing programs benefit from pointers in conjunction
with *new* programs. Let's say you would like to make a huge
dataset used in an existing program available to a new
routine (or preferably, an object). It would be nice to be
able to pass the object a *pointer* only to this data, to
avoid copying the data, and allowing the object to keep the
pointer for future reference. This seems to be impossible
(though I may have misunderstood the documentation..).
Instead, you'd have to rewrite (parts of) the existing program
to use pointers in stead of normal variables - though I
presume routines being passed a variable by reference wouldn't
care if the call was e.g.,

 my_routine,*var_ptr instead of my_routine,var

I guess that the reason for the lack of an address operator
is that "normal" variables are allocated on the stack,
whereas pointer variables are allocated from "heap" memory...
I.e., some nontrivial part of the information on a "normal"
variable is kept on the stack - not just the addres of where
that information is.. This would of course make it dangerous
to make a pointer to a stack variable, since e.g., the pointer
could be stored in a common block and then accessed after the
stack variable had been deallocated (and the space possibly
allocated to something completely else!). Or maybe it's just
the lack of reference counting that does it - local variables
are automatically deallocated (irrespective of where the actual
variable is stored) on returns....

Anyway - I'll live with it...it is a big improvement in
notation over handles.

But back to the longer story on object orientation:

David F.:
> I think, in short, that yes, the changes are significant enough
> that you will be able to begin to write real OO software.
> You only have to work with objects for a few minutes to start
> getting all kinds of ideas for powerful programs that could
> be written with them. I think, eventually, that objects will have
> as big an impact on IDL programs as widgets did when they
> were first introduced.

Actually, one may write object oriented programs in almost

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

any language - certainly you can write OO programs in IDL 4,
compound widgets being the obvious example of object orientation,
though with handles etc other possibilities are clearly present.
Over the last 2-3 years (much to my surprise and amusement) I've
been "rediscovering" OO programming in IDL after ceasing to use
Simula several years earlier.

One good (textbook) example of a simple object that is not
just a compound widget is a queue. No - don't think of it as a
variable with elements - think of it (visualize it) as an
independent entity. Your program is over here on the left
side doing it's thing (like receiving and processing requests),
but requests are coming in too fast to handle. Well, you
create this "box" or "machine" or "object" or "thing"
or
whatever over there on the right side: that is a queue.
You can stuff "things" into it, and you can retrieve them.
That's all. So your "main" program could do something like

 requests = obj_new('queue') ;; Make sure we do have a queue

 WHILE NOT finished DO BEGIN
 req = read_request() ;; Read

 WHILE req NE no_request DO BEGIN ;;
 requests->insert,req ;; Put into the queue
 req = read_request() ;; Read in next request
 END

 ;; Process one request at a time before checking the
 ;; input again
 next = requests->next() ;;
 IF next NE no_request THEN process_request(next)
 END

Now, object orientation is mostly a matter of how you choose
to organize your thoughts when dealing with a problem. You can
do this in IDL 4.0 with handles instead, with a slightly
different packaging.

 requests = mk_queue() ;; Make sure we do have a queue

 WHILE NOT finished DO BEGIN
 req = read_request() ;; Read

 WHILE req NE no_request DO BEGIN ;;
 queue_insert,requests,req ;; Put into the queue
 req = read_request() ;; Read in next request

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 END

 ;; Process one request at a time before checking the
 ;; input again
 next = queue_next(requests) ;;
 IF next NE no_request THEN process_request(next)
 END

Of course, having an "object orientated language" makes the
way ahead so much simpler. For example, each request could
be objects (of varying type) with a "priority" function
associated with them - the priority could depend on e.g.,
the time since the request was made (not necessarily a
linear dependence!) etc. etc., and the queue object
could be written to automatically take this into account
each time a request->next() function was called etc..

Also, processing the requests may be done by a
"processor" object/machine, which maintains it's
own internal state, i.e., use

 machine = obj_new('processor')

 :
 :
 IF next NE no_request THEN machine->process,next

Now comes the fun of object orientation, with or without
syntax geared specifically towards it:

Let's say you want to find out the difference of ignoring
a certain type of events:

 machine1 = obj_new('processor','Machine 1')
 machine2 = obj_new('processor','Machine 2')

 :
 :
 IF next NE no_request THEN BEGIN
 machine1->process,next ;; Always
 IF next->good() then machine2->process,next ;; Sometimes
 END

Imagine the program output (let's say, printed out by
the machine->process procedure):

IDL> test_processes
Machine 2 Exploded - further messages stopped

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Machine 1 Stopped - further messages stopped

On object oriented graphics:

David's (temporary, I'm sure!) frustration about the
object-oriented graphics comes as no surprise at all - just
think about the time we've all spent getting "up to speed"
with all of the "direct" graphics stuf, and writing our
own favourite procedures to do this and that exactly the way
we want. Without having any hands-on experience of OO graphics
in IDL 5.0, I imagine it's almost like throwing away most of that
experience and all those neat solutions all at once, and having
to get up to speed once more in an unfamiliar, if not hostile
terrain! It takes some time to reinvent the wheel, i.e., to get a
good understanding of how things work, and then reframing your
favourite tools as objects instead of procedures..

Regards,

Stein Vidar

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

