Subject: Re: New user needs help Posted by m.a.vaughan on Wed, 04 Jun 1997 07:00:00 GMT View Forum Message <> Reply to Message

In article <Pine.SOL.3.95.970602190951.20024A-100000@comp>. Brent Ragar

 bragar@comp.uark.edu> wrote: 1- Hi all!]-]- First off I feel I should apologize for being so ignorant. My 1-professor handed me the IDL package and told me to just write a program 1-for our research. I haven't ever programmed before and have been unable to 1-find one thing I need in the manual, the FAQ, or on a web page...]- I am wanting to use IDL to solve a transcendental equation. All]-the values are defined except one variable, which cannot be isolated (at]-least not with the math I've had). Is there some magical way that I can]-have IDL solve for this variable? I can set an expression that includes 1-the value equal to an integer, if that would help. I'm really at a loss.]-I'm sorry if I've asked something that's been covered before, but I didn't 1-really know what I was looking for and dejanews couldn't help me! Private 1-e-mail is welcome and much appreciated. Thanks in advance for you 1-assistance!

I haven't been at this IDL stuff very long myself (started with the 5.0 demo), so there may be other ways to do this...

- o The FX_ROOT function should get you what you want (this is an implementation of Muller's method)
- o if you have a differentiable function and a reasonable starting guesstimate the Newton's method is the way to go...

$$x[i+1] = x[i] - \cdots f'(x[i])$$

You should be able to find Muller's method and Newton's method in any introductory numerical analysis text (e.g. Burden & Faires; also in Numerical Recipes)

Mark Vaughan

1--Brent Ragar

```
]-bragar@comp.uark.edu
]-http://comp.uark.edu/~bragar
]-
```