
Subject: 3D point cloud visualization: filled polygons in the front, different fill colour +
lines in the back
Posted by Nuno Ferreira on Mon, 25 May 2015 17:56:29 GMT
View Forum Message <> Reply to Message

Hi all,

I am trying to visualize 3D point clouds taken with a Kinect v2 camera. My data consist of a set of
vertices in 3D space (xyz + RGBA) with connectivity information (polygons). Suppose I take a
photo of someone, with depth information, from a single position: looking from the front, I would
see a normal photo, but it could be rotated all around, allowing to see the back (I would have the
polygons only from the half-surface that was facing the camera). I am trying to visualize this
dataset using filled polygons in the front side (without lines) and shades of grey + lines in the back
face.

I tried a few options but each has specific problems (please see the screenshot:
 https://drive.google.com/file/d/0B6Ti5FMqve-dRzRuMk9yY1FjM2c /view?usp=sharing - you can
also run the program below):

- in option 1, it is difficult to distinguish the back face from the front face and that is why I would
prefer using a single color for the back face (e.g., grey, eventually shaded + lines);

- in options 1 and 2, the lines in the front side cover the filled polygons and since the density of
vertices is large I would see mainly black lines that would at least partially hide the colors of the
polygons;

- option 3 is almost what I would like, but I would prefer having the lines in the back face with a
single color. Do you have any suggestions?

I am also aware that I could either offset or scale the vertices positions to avoid covering the lines
with the polygons but I would prefer a solution that does not change these positions.
Many thanks and sorry for the long message!

Nuno

PRO question_example_event, ev
; (not really needed for this example)
END

PRO question_example
; create a test object
vertices = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0.5, 0.5, 1]]
connectivity = [3, 0, 1, 4, $
 3, 1, 2, 4, $

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91011#msg_91011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 3, 2, 3, 4, $
 3, 3, 0, 4]
vert_colors = [[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]]

; Initialize model for display (2 views).
oModel1 = OBJ_NEW('IDLgrModel')
oModel2 = OBJ_NEW('IDLgrModel')

; Initialize polygon and/or polyline
option=4
CASE option of

 1: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 2: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=1)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 3: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=1)
 oPolygon2 = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, STYLE=2, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=0)
 end
endcase

; Add the polygon(s) and/or polyline to the model.
oModel1 -> Add, oPolygon
if option EQ 1 or option EQ 2 then oModel1 -> Add, oPolyline
if option EQ 3 then oModel1 -> Add, oPolygon2
oModel2.Add, oModel1, /alias ; create an alias for 2nd model

; used for display:

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ov1 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2)
ov1.add, oModel1
ov2 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2)
ov2.add, oModel2

; create GUI
s = 256
base = widget_base(/row, Title='Option '+string(option))
d1 = widget_draw(base, graphics_level=2, $
		xsize=s, ysize=s, tooltip="Front")
d2 = widget_draw(base, graphics_level=2, $
		xsize=s, ysize=s, tooltip="Back")

; show GUI and model
widget_control, base, /realize
widget_control, d1, get_value=ow1
widget_control, d2, get_value=ow2
oModel1 -> Rotate, [1, 0, 0], 45 ; Rotate to better show the front side
ow1.setproperty, graphics_tree=ov1
ow1.draw
oModel1 -> Rotate, [1, 0, 0], 180 ; Rotate again to show the back side
ow2.setproperty, graphics_tree=ov2
ow2.draw

xmanager, 'question_example', base
END

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

