Subject: Re: set all elements in 2d array between some range to 1
Posted by Jeremy Bailin on Wed, 27 May 2015 03:46:37 GMT

View Forum Message <> Reply to Message

On Friday, May 22, 2015 at 4:14:45 PM UTC-5, Brian Cherinka wrote:

> So I'm trying to set all elements of a 2d-array that are between some padding, based off
elements in another vector, to 1. Creating a mask of 1's and 0's.

>

> | want to turn this bit of code, which runs in 30 seconds, into a non-loop bit of code that runs
faster.

wave = 2d array of floats - size [4112,709]
skywave = 1d array of floats - size [739]

nx =4112

ny =709

nlines = 739

skylinemask = intarr(nx,ny) ; output 2d array of 1's and O's

for j = 0, nlines-1 do begin
index = where((wave gt skywave[j]-3) and (wave It skywave][j]+3), nindex)
if (nindex gt 0) then skylinemask[index] = 1

endfor

I've started tackling this with value_locate but | got stuck.

waved = wave[*]

uniwave = sort(waved)
minskywave = skywave - 3
maxskywave = skywave + 3

vl = value_locate(minskywave, waved[uniwave])
v2 = value_locate(maxskywave, waved[uniwave])

VVVVVVVVVVVVVVVVVVYVVYVVYVYVYV

Any ideas on how to finish this? Or a simpler way than what I'm attempting. Thanks.

Did someone say value_locate? ;-)

| have two solutions to this. The obvious IDL Way is easy but requires many GB of memory for
arrays of this size because it requires building several NX x NY x NLINES arrays, each of which
has over 4 billion elements:

skywave_sorted = skywave[sort(skywave)]
minskywave = skywave_sorted - 3
maxskywave = skywave_sorted + 3

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36967&goto=91026#msg_91026
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91026
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; memory-intensive version

minmask = rebin(wave, nx, ny, nlines, /sample) gt rebin(reform(minskywave,1,1,nlines), nx, ny,
nlines)

maxmask = rebin(wave, nx, ny, nlines, /sample) It rebin(reform(maxskywave,1,1,nlines), nx, ny,
nlines)

skylinemask_v1 = total(minmask * maxmask, 3) ne O

The value_locate way is actually ridiculously easy once you merge the overlapping sky regions.
Here is how | would first do that:

; 1. merge overlapping skyline regions
; First figure out where the overlaps are, and label them uniquely
non_overlap = [1, minskywave[1:*] gt maxskywave] ; this is O if it overlaps with previous one, 1 if
it's
; a new skyline region
skyregionlabel = total(non_overlap, /cumulative, /int) ; a unique integer for each skyline region
skyreghist = histogram(skyregionlabel, min=1, omax=nlineregions, reverse_indices=skyri)
; Second, create new non-overlapping arrays. In this new region array, the even indices
; indicate the beginning of a sky region and the odd indices indicate the end of a sky region.
; For example, the first region goes from skyregion_bounds[0] to skyregion_bounds[1].
skyregion_bounds = fltarr(2L * nlineregions)
for i=0l, nlineregions-1 do begin
skyregion_bounds[i*2] = minskywave[skyri[skyri[i]]]
skyregion_bounds[i*2+1] = maxskywave[skyri[skyri[i+1]-1]]
endfor

...and then the reason for sticking both the minimum and maximum bounds into a single array
becomes clear once you use the value_locate magic to do the real work:

; now use value_locate to see where wave lies with respect to these boundaries
wave_regions = value_locate(skyregion_bounds, wave)

; now if wave_regions is even then it is within a sky region, and if it is odd then it is between
regions

skylinemask_v2 = (wave_regions+1) mod 2

-Jeremy.

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

