Subject: Re: Can my big for loop exploit array operations?
Posted by Dick Jackson on Tue, 20 Oct 2015 15:51:01 GMT

View Forum Message <> Reply to Message

JTMHD wrote on 2015-10-20 5:35am:> Hi,

>

> I'm writing a little post-processing procedure and need help avoiding a hefty for loop, which will
typically require 10003 iterations.

>

>

> |ts purpose is to take data from a simulation, which expresses three components of a vector
field at a different position s.t.

X - component is defined on cell boundary in x-direction, cell center in other directions (xb,yc,zc(
y - component is defined on cell boundary in y-direction, cell center in other directions (xc,yb,zc)
z - component is defined on cell boundary inz-direction, cell center in other directions (xc,yc,zb)

and express the field as defined in the cell center for all components (xc,yc,zc).

VVVVYVYVYVYV

Rather than using interpolation, | think the best way will be to simply average the values across
the cell face to head off errors down the line.
>

> The problem is im not sure how to avoid a hefty for loop which goes through all elements taking
the desired average as follows....

FUNCTION reformat_bcomponents_1,t

data = getdata(t,/BX,/BY,/BZ,/GRID)

VVVVYVYV

> bx = DBLARR(SIZE(data.x,/N_ELEMENTS),SIZE(data.y,/N_ELEMENTS),SIZ
E(data.z/N_ELEMENTS))
> py = DBLARR(SIZE(data.x,/N_ELEMENTS),SIZE(data.y,/N_ELEMENTS),SIZ
E(data.z,/N_ELEMENTS))
> bz = DBLARR(SIZE(data.x,/N_ELEMENTS),SIZE(data.y,/N_ELEMENTS),SIZ
E(data.z,/N_ELEMENTS))

>

> FOR iz = 0,SIZE(data.z,/N_ELEMENTS) -1 DO BEGIN

> FOR iy = 0,SIZE(data.y,/N_ELEMENTS) -1 DO BEGIN

> FOR ix = 0,SIZE(data.x,/N_ELEMENTS) -1 DO BEGIN

>

> bx[ix,ly,iz] = MEAN([data.bx][ix,ly,iz], data.bx[ix+1,ly,iz]] ,/DOUBLE)
> byl[ix,ly,iz] = MEAN([data.by[ix,ly,iz], data.by[ix,iy+1,iz]] ,/DOUBLE)
> bz[ix,ly,iz] = MEAN([data.bz[ix,iy,iz], data.bz[ix,ly,iz+1]] ,/DOUBLE)
>

> ENDFOR

> ENDFOR

> ENDFOR

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37245&goto=92152#msg_92152
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92152
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

mag_str = CREATE_STRUCT ('bxp’,bx,'byp',by,'bzp',bz)

RETURN,mag_str
END

VVVYVYVYVYV

If anyone can point me in the direction of how to do this exploiting array operations I'd be
grateful.
>

> Thanks in advance,
>

> Jonathan
Hi Jonathan,
| love a well-written question! | hope I've understood you correctly.

| think the middle 12 lines of code can be reduced to three (and execution time likely reduced by a
factor of 10 or 20):

FUNCTION reformat_bcomponents_1,t
data = getdata(t,/BX,/BY,/BZ,/GRID)

bx = (data.bx[0:-2, *, *] + data.bx[1:*, *, *]) / 2
by = (data.by[*, 0:-2, *] + data.by[*, 1.*, *]) / 2
bz = (data.bz[*, *, 0:-2] + data.bz[*, *, 1:*]) / 2

mag_str = CREATE_STRUCT ('bxp’,bx,'byp’,by,'bzp',bz)

RETURN,mag_str
END

If you like, this may be even faster, partly because IDL needs to do less indexing (expanding the
"*'s behind the scenes). Also, peak memory usage will be lower, for the same reason:

Aside:

Making 2-element kernels for convolution in a 3-D array is tricky in IDL. REPLICATE() may indeed
create an array with "1" as a trailing dimension, but when you actually look at it (or pass it into a
function call), it collapses. (something to do with quantum physics, | think :-)...

IDL> help,replicate(0.5, [2, 1, 1])

<Expression> FLOAT = Array[2]

IDL> help,replicate(0.5, [1, 2, 1])

<Expression> FLOAT = Array[1, 2] ; This one would cause CONVOL to fail, below
IDL> help,replicate(0.5, [1, 1, 2])

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

<Expression> FLOAT =Array[l, 1, 2]

I'll cast them all to three dimensions for consistency.

So, the three lines above become these six:

bx = CONVOL(data.bx, REFORM(REPLICATE(0.5, [2, 1, 1]), [2, 1, 1]))
bx = bx[1:*, *, *
by = CONVOL (data.by, REFORM(REPLICATE(0.5, [1, 2, 1]), [1, 2, 1]))
by = by[*, 1., *]
bz = CONVOL (data.bz, REFORM(REPLICATE(0.5, [1, 1, 2]), [1, 1, 2]))
bz = bz[*, *, 1:*]

These timings and memory metrics are typical for my experiments with arrays of size 100"3. You
may need some special handling if you have 100073, but this work can be easily divided into slabs
of, say, 100 columns/rows/planes at a time. (sorry for line wrapping):

IDL> help,/memory
heap memory used: 61573317, max: 61591749, gets: 466522324, frees: 466429302

NANNNNNNN

("max:" my base memory usage)

IDL> tic & bx = (data.bx[0:-2, *, *] + data.bx[1:*, *, *]) / 2 & toc & help,/memory
% Time elapsed: 0.20199990 seconds.
heap memory used: 61573305, max: 85333785, gets: 466522291, frees: 466429269

NANNNNNNN

("max:" peak memory used for (a+b)/2 method)

IDL> tic & bx2 = CONVOL(data.bx, REPLICATE(0.5, [2, 1, 1])) & bx2 = bx2[1:***] & toc &
help,/memory

% Time elapsed: 0.16899991 seconds.

heap memory used: 61573189, max: 77574061, gets: 466522197, frees: 466429175

NNNNNNNN
("max:" peak memory used for CONVOL method)
And yes, these give the same results: :-)
IDL> array_equal(bx,bx2)
1

Hope this helps!

Cheers,
-Dick

Dick Jackson Software Consulting Inc.

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Victoria, BC, Canada
www.d-jackson.com

Page 4 of 4 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

