Subject: Re: Optimizing loops
Posted by Phillip Bitzer on Tue, 08 Dec 2015 16:28:48 GMT
View Forum Message <> Reply to Message

On Wednesday, December 2, 2015 at 1:04:33 PM UTC-6, sam.t...@gmail.com wrote:

> If anyone has optimization suggestions, please let me know! Thanks :)

In addition to the suggestions that Sergey provided, let's add a couple more:

- > ind14 = WHERE(dist LE 14.)
- > land14 = land_mask(ind14)
- > landy = WHERE(land14 EQ 0, landy cnt)
- > land_perc[j] = FLOAT(landy_cnt)/FLOAT(N_ELEMENTS(land14))*100

For the last line, no need to "float" both numbers. Also, you might consider either a) dropping the *100 and do that at the end or b) reordering the operations so that you don't need to call FLOAT at all. Consider:

IDL> 1/2 ;we know this is not the number we are looking for

IDL> 1/FLOAT(2) ;closer, but we'll have to multiply the final array by 100

IDL> 100.0 * 1/2 ;this works, but only if the "100.0" comes first

Also, you don't need to count the number of elements in land14 - you already have that information. It's the same size as ind14, and you can get that size using the count argument.

Further, x^*x is faster than x^2 ...although the cost/benefit depends on the size of the arrays.

Finally, there *is* a way to further vectorize your code. But, whether it's worth it depends on the size of the land/sat arrays. There's some black magic using rebins, pound signs, etc.