
Subject: Re: Slow object graphics when plotting multiple lines
Posted by Yngvar Larsen on Mon, 04 Apr 2016 16:50:59 GMT
View Forum Message <> Reply to Message

On Monday, 4 April 2016 17:54:03 UTC+2, alx wrote:

>> Other, similar, tools don't have these issues. (Yes, I mean matlab).

> As far as I understand, the function PLOT(/OVERPLOT) was NOT designed as being a simple
overplotting routine. When you add a new curve, the entire plot is actually modified (ranges, axes,
etc...) at the expense of some slowness. I guess that it is a feature from Exelis.

Yes, this "feature" makes this approach O(N^2), which scales terribly beyond a couple of hundred
lines. I don't see why the view needs to be recalculated for each new object, at least not by
default.

Though this use is not really what you should do in IDL anyway since the overhead created by the
loop itself makes even direct graphics slow when then number of lines becomes large (> 10000 or
so).

> If you want to do a "simple" overplotting (ala OPLOT), an efficient way is to combine
POSITION, CURRENT and [XYZ]RANGE keywords, instead of using OVERPLOT.

How? The documentation of PLOT() indicates something else (unless I misunderstood you):

OVERPLOT
Set this keyword to 1 (one) to place the graphic on top of the currently-selected graphic within the
current window. The two graphics items will then share the same set of axes. If no current window
exists, then this keyword is ignored and a new window is created.
[...]
Tip: If you want your graphic to have a new set of axes, you should use the CURRENT keyword
instead.

CURRENT
Set this keyword to create the graphic in the current window with a new set of axes. If no window
exists, a new window is created.
[...]
Tip: If you want your graphic to share the same axes as an existing graphic, you should use the
OVERPLOT keyword instead.

I think it should be possible to do something like

p = PLOT(randn(seed,num_ points, num_lines))

and get what you want without jumping through the hoops involved in constructing the
CONNECTIVITY matrix or adding fake missing data (NaN) to make it work. I don't see why not.

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92974#msg_92974
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92974
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PLOT() currently takes a vector as input, and if you try to apply it to a 2D array, it will flatten to a
1D array first. The latter property is _not_ documented, so the Harris people could easily add this
functionality. It should be <10 lines of code. It would make the life easier for simple cases like this
where all the curves have the same number of points.

> The POLYLINE trick, when many curves are needed, looks like to me somewhat faster than
Matlab or Python equivalents.

Indeed. And, as I showed, nearly as fast as direct graphics for large number of lines. Which is
quite impressive!

POLYLINE is of course still very useful when plotting lots of curves with different number of points,
e.g. a map.

--
Yngvar

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

