
Subject: Re: Comparison of IDL and PV-Wave (and OO)
Posted by David Ritscher on Fri, 11 Jul 1997 07:00:00 GMT
View Forum Message <> Reply to Message

...
> I understand that PvWave and IDL diverged some years ago; but the FAQ
> implies that they are still quite similar. I wonder if anyone could
> compare them, strengths and weaknesses. I'm particularly interested in:
...

Dear Steve and group,

I am a long-time IDL and PV-Wave user. The comparison between the two
products is currently rather complicated. I try to program so that
most of what I do is compatible with both packages (at least, except
for the widget part of things). Up till the newest release of IDL
(5.0) the basics of the languages were the same, with only trivial
differences, except for:
 1. A different widget interface
 2. A different set of math extension routines. IDL uses Recipes in C,
 PV-Wave uses the IMSL routines. After the makers of IMSL and
 PV-Wave merged, IDL lost access to the IMSL routines and then chose
to
 adopt the Recipes in C routines.

With IDL 5.0, it looks like one of the players is starting a
much-needed new thrust, towards an interactive data and graphics
language that can integrate current computer science developments.
Although the new version is mostly unchanged, it looks a little bit
more like C++. With luck, they will continue to bring the product
closer to a 1997 state-of-the-art, while providing mechanisms for
backwards compatibility.

IDL 5.0 introduces some elements of object-oriented programming. I
have developed a software system for cardiology analysis that is in
daily use in our hospital here. It contains some 35,000 lines of
code. It is not object oriented, and I am reaching a point where I
lose tremendous time and energy to repairing things in this code,
fixing things that get broken when a new feature is added, etc. From
this experience the need for an object-oriented approach has become
clear to me. PV-Wave says that they have no current intention of
changing the basis of the language so that it would support
object-oriented programming. (They speak about object oriented, but
this has to do with some pre-packaged tools, not with the basis of the
language itself).

Whether object oriented is important for your application depends on
what you'll be doing. If the chief goal is to use the software as a

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1156
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6280&goto=9503#msg_9503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

hand calculator with good graphics display capabilities, it is
probably irrelevant. If the goal is to design software components to
be used and extended by a group of people, then I would consider it
crucial.

But speaking of object oriented, the makers of PV-Wave are
demonstrating some strides in this direction, namely JWave and JNL.
It looks like they have given up on the idea of updating their own
language and are instead jumping on the Java bandwagon, and providing
tools for Java that provides advantages normally available within
PV-Wave. There is a writeup on JWAVE on a Netscape DevEdge page:
http://developer.netscape.com/guides/components/
JNL is an extension to Java that provides needed numerical capabilities.

Don't forget to look at MATLAB as another possible choice. They are
also making strides now, and it looks like they are adding enough new
language features that one could now program a real system within
MATLAB (before, there were major deficiencies, such as no 2-D arrays,
no integer type, etc.). Particularly interesting with MATLAB are the
availability of 'compilers' that convert MATLAB code to C code. A
major advantage is the rich collection of toolboxes, often writen by
well-known people in the area of the toolbox.

As to the cost question, this is also somewhat hard to evaluate. Here
in an academic setting in Germany, out state has obtained state-wide
licensing. For my institute within the University an unlimited
license for all possible platforms costs about $400 per year.
Meanwhile, I see that the IDL folks have learned from the MATLAB
folks, and are offering an IDL student edition for US$79,
International Price: US$105. For commercial purchases, the packages
aren't cheap. There it depends on which toolkits you buy, etc.

It is a hard time to make a choice between these two branches of the
language, since both companies are working hard to try to
differentiate themselves. There remain problems within the common
core language, and I hope that this competition will lead to solutions
to these problems. As someone here recently mentioned, when one
write, in either language, "a = 3", one has just defined a TWO BYTE
INTEGER variable (And this, in 1997!) This was probably a logical
default when the language was first conceived. A mechanism for
backwards compatibility plus future development needs to be reached;
perhaps a system flag, where, for example, !LANGUAGE_LEVEL=1 inserted
into routines would provide backwards compatibility to a specified
language version.

I would be interested in hearing from current IDL users as to how
sufficient the current object-oriented features are, and what is
missing. Reading through the documentation I see, for example, that

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

polymorphism and overloading aren't there.

Regards,

David Ritscher

--
David Ritscher
Zentralinstitut fuer Biomedizinische Technik Tel: ++49 (731) 502 5313
Albert-Einstein-Allee 47 Fax: ++49 (731) 502 5315
Universitaet Ulm Internet:
D-89069 ULM
david.ritscher@zibmt.uni-ulm.de
Germany

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

