Subject: Re: Efficient comparison of arrays
Posted by David P. Steele on Mon, 11 Aug 1997 07:00:00 GMT

View Forum Message <> Reply to Message

This is a multi-part message in MIME format.

-------------- 4A996C43C0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Marty Ryba wrote:

>

> David Fanning wrote:

>>>> Given vectors of the type...

>>>>

>>>> g =[1,2,3,4,5]

>>>> b =[3,4,5,6,7]

>>>>

>>>> What is the most efficient way to determine which values that occur in
>>>> g also occur in b (i.e., the values [3,4,5] occur in both a and b).
>> | don't know if this is the most efficient way (it probably isn't),

>> but this is my off-the-cuff way of solving this problem.

>>

>> FUNCTIONA in_B,a,b

>> num = N_Elements(a)

>> vector = FltArr(num)

>> FOR j=0,num-1 DO BEGIN

>> index = Where(a(j) EQ b, count)

>> IF count GT O THEN vector(j) = 1 ELSE vector(j)=0

>> ENDFOR

>> solution = a(Where(vector EQ 1))

>> RETURN, solution

>> END

>>

>> When | run the example case above, | get a vector with the values
>> [3,4,5].

Here's a routine, called SYNCHRONIZE, that | whipped up thanks to some
help from RSI. | had the problem of two data streams, each with a
structure with a tag called "dwell" that needed matching up. This

routine works great except possibly for some funny behavior if a given
number is repeated in a data stream (nah, that shouldn't happen in real
data). If you don't need the full-blown procedure, the guts of the

algorithm should be obvious.

Dr. Marty Ryba | Of course nothing | say here is official
MIT Lincoln Laboratory | policy, and Laboratory affililaton is

VVVVVVVYVYVYVVYV

Page 1 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2184
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6409&goto=9685#msg_9685
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9685
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ryba@Il.mit.edu | for identification purposes only,
| blah, blah, blah, ...

; Name:

; SYNCHRONIZE

; Purpose:

; Match up two arrays of structures by a tag name

; Usage:

; synchonize,a,b[,ause=ause][,buse=buse][,keywords=values]

; Inputs:

; A & B are arrays of structures to be sychronized. They are

; returned containing only those members that match within the

; specified tolerance for the tag fields being matched.

; Optional Keyword Inputs:

; tags - String array containing the tag names to match by. Defaults
; to ['dwell',/dwell’]. Case insensitive.

; tolerance - Maximum difference to declare a match. All comparisions
; are double precision. Defaults to 0.0 (exact match).

; Optional Outputs:

; ause - Set of array indicies used to convert input A to output A.

; Useful if you have 2 already synchonized arrays and need to

; synch a third.

; buse - Same for B

: Restrictions:

; The structures should have only one member with the tag name given.
; If there are multiple structure members with the same tag, SYNCHRONIZE
) will use the first.

; Cannot use tags from nested structures.

; Modification History:

; M.F. Ryba, MIT/LL, June 93, Created from algorithm written by David
; Stern of RSI.

; M.F. Ryba, Jan 95, added TEMPORARY and check for whether the

; structure is shortened.

PRO Synchronize, a, b, ause=ause, buse=buse, tags=tags, tolerance=tolerance, $
help=help

IF keyword_set(help) THEN BEGIN
doc_library, 'synchronize'
return

ENDIF

IF n_elements(tags) EQ O THEN tags = ['dwell’, 'dwell']
IF n_elements(tolerance) EQ O THEN tolerance = 0.0d
tags = strupcase(tags)
atags = tag_names(a)

VVVYVVYVYVYVYVYV

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

btags = tag_names(b)

ai = where(atags EQ tags(0), cnt)
IF cnt EQ O THEN BEGIN
string = 'Tag '+tags(0)+' not found in structure A'
message, string
ENDIF
IF cnt GT 1 THEN BEGIN
string = 'Structure A has more than 1 tag named '+tags(0)+ $
" will use the first'
message, string, /informational
ENDIF

bi = where(btags EQ tags(1), cnt)
IF cnt EQ O THEN BEGIN
string = 'Tag '+tags(1)+' not found in structure B'
message, string
ENDIF
IF cnt GT 1 THEN BEGIN
string = 'Structure B has more than 1 tag named '+tags(1)+ $
", will use the first'
message, string, /informational
ENDIF

ai = ai(0) & bi = bi(0)

tmp = [double(a.(ai)), double(b.(bi))]
sortab = sort(tmp)

tmp = tmp(sortab)

match = where((tmp(1:*) - tmp) LE tolerance, cnt)

IF cnt GT O THEN BEGIN
aeq = sortab(match)
beq = sortab(match+1)
tmp = aeq < beq
beq = (beq > aeq) - n_elements(a)
aeq =tmp
IF n_elements(aeq) NE n_elements(a) THEN a = (temporary(a))(aeq)
IF n_elements(beq) NE n_elements(b) THEN b = (temporary(b))(beq)
ause = aeq
buse = beq
ENDIF ELSE BEGIN
print, 'No matches found between A.'+tags(0)+' and B.'+tags(1)

VVVYVVYVYVYVYVYV

ause =-1

buse =-1
ENDELSE
return

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> END

Here is another solution that was posted on this newsgroup several years
ago. | found it useful enough to keep around. The header credits the
creators.

Dave

David P. Steele Ph: (306) 966-6447

ISAS, University of Saskatchewan Fax: (306) 966-6400
116 Science Place David.Steele@usask.ca
Saskatoon SK S7N 5E2 DANSAS::STEELE

-------------- 4A996C43C0

Content-Type: text/plain; charset=us-ascii; name="Where_ar.pro"
Content-Transfer-Encoding: 7bit

Content-Disposition: inline; filename="Where_ar.pro"

T

: NAME:
: WHERE_ARRAY

; PURPOSE:
; Return the indices where vector B exists in vector A.
; Basically a WHERE(B EQ A) where B and A are 1 dimensional arrays.

: CATEGORY:
X Array

. CALLING SEQUENCE:
 result = WHERE_ARRAY(A,B)

. INPUTS:

; A vector that might contains elements of vector B
: B vector that we would like to know which of its

;. elements existin A

; OPTIONAL INPUTS:

; KEYWORD PARAMETERS:
; 1A_Iin_B return instead the indices of A that are in
; (exist) in B

; OUTPUTS:

: Index into B of elements found in vector A. If no

: matches are found -1 is returned. If the function is called

; with incorrect arguments, a warning is displayed, and -2 is

Page 4 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; returned (see SIDE EFFECTS for more info)
; OPTIONAL OUTPUTS:

: COMMON BLOCKS:
: None

; SIDE EFFECTS:

; If the function is called incorrectly, a message is displayed

; to the screen, and the |[ERR_STRING is set to the warning

; message. No error code is set, because the program returns
; -2 already

; RESTRICTIONS:

; This should be used with only Vectors. Matrices other then
; vectors will result in -2 being returned. Also, A and B must
; be defined, and must not be strings!

; PROCEDURE:

; EXAMPLE:

; IDL> A=[2,1,3,5,3,8,2,5]

; IDL> B=[3,4,2,8,7,8]

; IDL> result = where_array(a,b)

; IDL> print,result

; 0 0 2 2 3 5
; SEE ALSO:

: where

; MODIFICATION HISTORY:

; Written by: Dan Carr at RSI (command line version) 2/6/94
. Stephen Strebel 3/6/94

: made into a function, but really DAN did all

; the thinking on this one!

. Stephen Strebel 6/6/94

. Changed method, because died with Strings (etc)

; Used ideas from Dave Landers. Fast TOO!

; Strebel 30/7/94

; fixed checking structure check

FUNCTION where_array,A,B,IA_IN_B=iA_in_B

; Check for: correct number of parameters

; that A and B have each only 1 dimension

; that A and B are defined

if (n_params() ne 2 or (size(A))(0) ne 1 or (size(B))(O) ne 1 $
or n_elements(A) eq 0 or n_elements(B) eq 0) then begin
message,'Inproper parameters',/Continue

Page 5 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

message,'Usage: result = where_array(A,B,[IA_IN_B=ia_in_b]',/Continue
return,-2
endif

;parameters exist, let's make sure they are not structures

if ((size(A))((size(A))(0)+1) eq 8 or $

(size(B))((size(B))(0)+1) eq 8) then begin

message,'Inproper parametrs',/Continue
message,'Parameters cannot be of type Structure',/Continue
return,-2

endif

; build two matrices to compare
Na = n_elements(a)

Nb = n_elements(b)

| = lindgen(Na,Nb)

AA = A(l mod Na)

BB = B(l/ Na)

;compare the two matrices we just created

| = where(AA eq BB)

la =i mod Na

Ib=1i/na

; normally (without keyword, return index of B that
; existin A

if keyword_set(iA_in_B) thenindex =la $

else index = Ib

‘make sure a valid value was found
if 1a(0) eq -1 or Ib(0) eq -1 then index = -1

return,index

END

-------------- 4A996C43CO--

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

