
Subject: Re: Efficient comparison of arrays
Posted by J.D. Smith on Thu, 14 Aug 1997 07:00:00 GMT
View Forum Message <> Reply to Message

> <snip>
>
> All very true. With any method there are going to be some tradeoffs.
> But I am skeptical of a method that relies on the sorting of the
> arrays in question. In my timing above for CONTAIN(), of the 10.10
> seconds, 9.40 are spent sorting the array! On some hardware and with
> some data this may not be a problem; on my hardware and with my
> data it most definitely is.
>

It all boils down to this... the bulk of the time taken by contain() is
in sorting. This is obvious. Let a and b be the two vectors in
question. Let a have n elements and b have m elements. The approximate
number of operations to do the sorting is then (n+m)log(n+m) for an
efficient sorting algorithm, on average. On the other hand,
find_elements() necessarily takes on order (n x m) operations (for each
of the m elements in b, compare it with all n elements in a). If n>>m
then the sorting term is approximately nlog(n). Which method takes more
operations? The ratio of the two operation counts is r=log(n)/m. When
this is unity, the two methods will be roughly on equal footing. If r
is much greater than 1, find_elements() will be faster. For r much less
than one, contain() with it's sorting will be faster. In the case of
n=m, r=2log(2n)/n << 1 for any sizeable n (> 10, say).

So, truly, it does depend critically on your data. I found, on my
machine, an equality at approximately m=25 for n=65536. Log(n)=16 in
this case, so it's not too far off. For larger, n, the test gets more
accurate (until memory becomes an issue).

JD

Page 1 of 1 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6424&goto=9738#msg_9738
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9738
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

