
Subject: Re: Efficient comparison of arrays
Posted by J.D. Smith on Tue, 12 Aug 1997 07:00:00 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
>
> Augh, it's too late for this:
>
> I wrote this:
>
>> Given a and b:
>>
>> a = [1,2,3,4,5]
>> b = [3,4,5,6,7]
>>
>> Let,
>>
>> array1 = BYTARR((MAX(a) > MAX(b)) - (MIN(a) < MIN(b)))
>> array2 = array1
>>
>> Then, let,
>>
>> ind1[a] = 1L
>> ind2[b] = 1L
>>
>> Finally, let,
>>
>> commonIndex = ind1 * ind2
>>
>> The vector commonIndex now has 1s at the locations where there are
>> common values in the two sets. In other words,
>>
>> Print, commonIndex
>> 0 0 0 1 1 1
>
> When I meant to write this:
>
> Given a and b:
>
> a = [1,2,3,4,5]
> b = [3,4,5,6,7]
>
> Let,
>
> array1 = BYTARR((MAX(a) > MAX(b)) - (MIN(a) < MIN(b)))
> array2 = array1
>
> Then, let,

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6424&goto=9761#msg_9761
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9761
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> array1[a] = 1L
> array2[b] = 1L
>
> Finally, let,
>
> commonIndex = array1 * array2
>
> The vector commonIndex now has 1s at the locations where there are
> common values in the two sets. In other words,
>
> Print, commonIndex
> 0 0 0 1 1 1
>
> --

There is an error in this code. Alex Schuster presents a similar
solution, but without the error. The problem is you should be
subtracting (min(a) < min(b)) from a and b as such:

array1[a- (min(a) < min(b))]=1L

and then add the minimum of the two vectors to the location in the
commonIndex vector to get the final common values.

Otherwise, there will not, in general, be enough room in the index
arrays to mark all the data values. It is just an accident that it
works for [1,2,3,4,5],[3,4,5,6,7] ... try [1,2,3,4,5,6,7],[3,4,5,6,7,8]
and you'll see the problem.

Another question with the process... what happens when you don't have a
well grouped set of integers... e.g [1,2,3,4,5] and [3,4,10000,900,2]
... lots of wasted zeroes in those index arrays to determine this one.

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

