
Subject: Re: Application programming--missing features
Posted by sterner on Fri, 16 Apr 1993 14:26:42 GMT
View Forum Message <> Reply to Message

jdlb@kukui.ifa.hawaii.edu (J-F Pitot de La Beaujardiere) writes:

> Though I love IDL and commend David Stern et al. for their fine work, I feel
> deprived of two important features which are important for application
> programming. I'd like to see them implemented, or failing that to be shown an
> elegant (i.e., non-tedious) way to simulate them.

> 1) Adding a "wrapper" to an intrinsic IDL routine is difficult.
> For example, consider William Thompson's <thompson@serts.gsfc.nasa.gov>
> just-posted routine PLOT_DROP for dropping bad data values when plotting
> data. That procedure, in effect, just adds a single keyword DROP_VALUE to
> the generic PLOT routine.

> In such an application, for each of the usual optional parameters accepted
> by PLOT one must make an entry in the procedure declaration and properly
> pass the parameter to PLOT. This involves either (a) defining defaults for
> each option or (b) tediously building up a command line and passing it to
> the EXECUTE function.

 There is an easier way. Its not perfect, but it is much better than
 then the tedious technique described above (which I've done myself
 in the past). The key is the IDL execute function, mentioned above.
 To show the technique I will give an example custom plot routine
 that just puts a color band behind the plot curve. This routine
 adds one new keyword to the plot routine:

;----- tplot.pro = test passing plot keywords to a custom plot routine ---
; R. Sterner, 16 Apr, 1993

 pro tplot, x, y, args, back=back

 if n_elements(back) eq 0 then back=40		; Color band color.
 if n_elements(args) eq 0 then key = '' else key = ','+args

 i = execute('plot,x,y'+key)			; Do plot.
 oplot,x,y,thick=8,color=back			; Plot color band.
 i = execute('plot,x,y'+key+',/noerase')		; Replot curve.

 return
 end

 All the plot options are available as far as I know. The reason
 this technique is not perfect is that the normal plot keywords must
 all be given inside a text string, unlike the normal plot call.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=17
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=724&goto=981#msg_981
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=981
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 An example call:

IDL> x=findgen(100)
IDL> y=x^2
IDL> tplot,x,y,'linestyl=1,psym=-4,color=255,tit="Test",chars=3,
 xran=[60,80],/ynoz',back=60

 The above would not fit on one line, but should all be entered on a
 single line. Note the new keyword, back. Try it with other plot
 keywords. Its not perfect, but much easier than other methods I've
 used.

 I too would like to get my hands on the original calling line as
 suggested in the original post. Something like a new keyword:
 !last_call with the entire calling line.

> 2) User-defined global variables for customizing program behavior do not
> exist.
 . . .
> The only two options are to (a) define a new system variable using DEFSYSV
> or (b) use common blocks. Option (a) fails because N_ELEMENTS(!FOO)
> returns an error ("Not a legal system variable") instead of zero if !FOO is
> undefined. Option (b) is very tedious for both programmer and user because
> common blocks are finicky beasts.
> The simplest solution would be to modify IDL such that n_elements(!foo)
> returns 0 if !foo is undefined.

 I agree that n_elements(!foo) should give 0 for undefined system
 variables. I think IDL may be working on that.

 I don't mind using commons. They are not so bad if you hide them
 from the user. I often initialize mine from control files. The
 user can setup something like .idl_xxx in their home directory
 with keywords defined inside (like zoom = 4). Comment lines should
 be allowed (I use both * and ; as comment characters) since options
 may easily be turned off without loosing track of them altogether.
 I use commons to share information among a set of related routines.
 One routine is written to initialize the common from the control
 file, but provide default values for any or all missing values.
 Another routine, called from all the others in the set, will check
 that the common has been initialized and if not call the
 initialization routine without bothering the user about it. I have
 found this technique to work very well.

 One more way to get around the current limitations of IDL system
 variables is to define environmental variables. These are easily
 accessed from IDL: zm = getenv('IDL_ZOOM'), and easily tested for
 existance: if zm eq '' then zoom = 4.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Ray Sterner sterner@tesla.jhuapl.edu
 Johns Hopkins University North latitude 39.16 degrees.
 Applied Physics Laboratory West longitude 76.90 degrees.
 Laurel, MD 20723-6099

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

