
Subject: Re: determining if a point is "inside" or "outside" a shape
Posted by Andrew Kraus on Mon, 18 Oct 1999 07:00:00 GMT
View Forum Message <> Reply to Message

A method I have used extensively in the past is less elegant, but works like
a charm. Create a pixmap of the entire window. Paint it black (ERASE), or
any intensity vaue for that matter, then POLYFILL your coordinates with a
different color. You can then check the color of the point you are testing.
Be sure to color the coordinates (boundary) as well so you know if the point
lies on the boundary itself. Pixmaps and polyfill are 2 of the faster
functions in IDL, so this goes very quickly. You can see how this handles
any shape, except donuts require a bit more thought.

Best of luck,

AK

dmarshall@ivory.trentu.ca wrote in message ...
> I have an interesting problem that I'm betting someone has solved already
> in some form or another.
>
> I have a set of x,y coordinates that describe a polygon, 2d in my case.
> How do I tell if another x,y point is inside the boundary of my polygon?
>
> I had an idea to take the center of my polygon and extend a line from it to
> the point and beyond, seeing if I cross the perimeter an odd number of
> times.
>
> Any other suggestions?
>
> Dave.
>
> David Marshall Physics Dept. Trent University
> dmarshall@remove.this.ivory.trentu.ca Peterborough Ontario Canada
>

Subject: Re: determining if a point is "inside" or "outside" a shape
Posted by Med Bennett on Mon, 18 Oct 1999 07:00:00 GMT
View Forum Message <> Reply to Message

I have solved this problem with the included two functions. It works by first
creating a point outside the polygon, then creating a line from the outside
point
to the test point. Then, the algorithm counts the number of intersections
between the test line and the lines making up the polygon. An odd number

Page 1 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3056
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10564&goto=17508#msg_17508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2019
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10564&goto=17514#msg_17514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

indicates that the test point is inside the polygon, while an even number
indicates a point outside the polygon. This method ensures a correct result
even
in the case of polygons with concave sides, etc. The function inpoly requires
the
line_int function, and returns an array with the same number of elements as the

number of data points, with a 1 for points inside the polygon and 0 for points
outside the polygon. Hope that this helps and that you can decipher my lousy
code. There is a problem if two adjacent points have the same X coord (slope of
one line segment is infinite) - this needs to be fixed!
=================================
function inpoly,polyxy,dataxy

; procedure to determine which points in dataxy
; fall inside a given polygon
; polygon is defined by series of vertices given
; in polyxy

polyxy = double(polyxy)
dataxy = double(dataxy)

;determine polygon min and max xand y values

pxmax = max(polyxy(0,*))
pxmin = min(polyxy(0,*))
pymax = max(polyxy(1,*))
pymin = min(polyxy(1,*))

;determine size of input arrays

dsize = size(dataxy)
if dsize(0) eq 1 then dpts = 1 else dpts = dsize(2)
datain = intarr(dpts)

psize = size(polyxy)
ppts = psize(2)
int = intarr(ppts)

; determine which points lie inside polygon bounding box

w = where((dataxy(0,*) lt pxmax) and (dataxy(0,*) gt pxmin) and $
 (dataxy(1,*) lt pymax) and (dataxy(1,*) gt pymin),c)

for i = 0,c-1 do begin ;loop through data

 testpt = [pxmin-(.1*(pxmax-pxmin)),pymax+(.1*(pymax-pymin))]
 l1 = [[testpt],[dataxy(*,w(i))]] ;line 1 is from testpt to data point

Page 2 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;loop through polygon edge segments - last point in polygon array must be same
as
first!

 for j = 0,ppts-2 do begin
 if (polyxy(0,j) ne polyxy(0,j+1) or polyxy(1,j) ne polyxy(1,j+1)) then
begin
 l2 = [[polyxy(*,j)],[polyxy(*,j+1)]] ;second line connects two vertices

 int(j) = line_int(l1,l2) ;calculate line intersection
 endif
 endfor

 nint = total(int) ;total no. of intersections

;even if point is outside polygon; odd if inside
 if (nint/2 eq fix(nint/2)) then datain(w(i)) = 0 $
 else datain(w(i)) = 1

endfor
print,total(datain),' points inside polygon.'
return,datain

end

===================================
function line_int,l1,l2

; calculate line equations

; print,l1,l2

if (l1(0,0) ne l1(0,1)) then begin
 slope1 = (l1(1,1)-l1(1,0))/(l1(0,1)-l1(0,0))
 yint1 = l1(1,0) - slope1*l1(0,0)
; print,'m1',slope1,'b1',yint1
endif else begin
 if ((l1(0,0) lt max(l2(0,*))) and (l1(0,0) gt min(l2(0,*)))) then return,1 $
 else return,0
endelse

if (l2(0,0) ne l2(0,1)) then begin
 slope2 = (l2(1,1)-l2(1,0))/(l2(0,1)-l2(0,0))
 yint2 = l2(1,0) - slope2*l2(0,0)
; print,'m2',slope2,'b2',yint2
endif else begin
 if ((l2(0,0) lt max(l1(0,*))) and (l2(0,0) gt min(l1(0,*)))) then return,1 $

Page 3 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 else return,0
endelse

; if lines are parallel, no intersection

if (slope1 ne slope2) then begin

xintersect = (yint2-yint1)/(slope1-slope2)
;print,'xintersect',xintersect
endif else return,0

if ((xintersect lt max(l1(0,*))) and (xintersect gt min(l1(0,*))) $
 and (xintersect lt max(l2(0,*))) and (xintersect gt min(l2(0,*)))) then
return,1
$
 else return,0

end
===================================

"Martin LUETHI GL A8.1 2-4092" wrote:

> Dear all
>
> Is there a simple and fast way to find the indices of array elements, which
> are inside of a boundary (in 2 dimensions). Let's say coord(npoints, 2) is an

> array of coordinates in the plane and bound(nbound, 2) is the array of a
> bounday polygon. The coordintes are not on a grid (otherwise one could use
> polyfillv (PV-Wave).
>
> Thank you for any suggestion!
>
> Martin
>
> --
> ==
> Martin Luethi Tel. +41 1 632 40 92
> Glaciology Section Fax. +41 1 632 11 92
> VAW ETH Zuerich
> CH-8092 Zuerich mail luthi@vaw.baum.ethz.ch
> Switzerland
> ==

dmarshall@ivory.trentu.ca wrote:

> I have an interesting problem that I'm betting someone has solved already

Page 4 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> in some form or another.
>
> I have a set of x,y coordinates that describe a polygon, 2d in my case.
> How do I tell if another x,y point is inside the boundary of my polygon?
>
> I had an idea to take the center of my polygon and extend a line from it to
> the point and beyond, seeing if I cross the perimeter an odd number of
> times.
>
> Any other suggestions?
>
> Dave.
>
> David Marshall Physics Dept. Trent University
> dmarshall@remove.this.ivory.trentu.ca Peterborough Ontario Canada

Subject: Re: determining if a point is "inside" or "outside" a shape
Posted by Job von Rango on Thu, 21 Oct 1999 07:00:00 GMT
View Forum Message <> Reply to Message

Ther is another analytic way to solve the problem:

 How to determine wether a point lies inside an arbitrary 2-dimensional
polygon
 or not?

 IDEA:
 Look at the sum of all angles tended between all pairs of neighboured
vertics
 the polygon and the given point.

 IN DETAIL:
 Assume we have the n vertices of polgons ordered at the positions:
 v_1, v_2, ... ,v_n
 The given point is denoted by p.

 Now connect the given point p with all n neighboured
 vertices, and get the n vectors beginning in p and ending
 in the vertices:

 vec_1 = vector(p_0, v_1)
 ...
 vec_n = vector(p_0, v_n)

 Now add all n angles tended between the 2 vectors vec_i and vec_(i+1):

 angle_i = angle(vec_i,vec_(i+1))

Page 5 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3289
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10564&goto=17487#msg_17487
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17487
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 and calculate the sum:
 n
 anglesum = sum angle_i
 i=1

 (Use vec_1 again for vec_(n+1) in the last angle_n)

 RESULT:
 _
 | 2*pi inside
 anglesum = -| if p is the polygon
 |_ 0 outside

 IMPORTANT:
 Take into account the correct sign of the angles
 and use the vertices in ascending order!
 Use e.g. the vector crossproduct:

 vec_i x vec_(i+1)

 in order to retrieve the absolut value |...| for the angle:

 |angle_i| = inv sin(|vec_i x vec_(i+1)|)

 The valid sign for angle_i is given by looking at the scalar product
 of the crossproduct from above and a fixed vector vec_perp, perpendicular
 to the area of the polygon:

 vec_perp * (vec_i x vec_(i+1))
 sign_i = -------------------------------------
 | vec_perp * (vec_i x vec_(i+1)) |

 Now we get the correct value for all angles:

 angle_i = sign_i * |angle_i|

 REMARK:
 Examine the case of a given point inside the polygon, but very near
 to the edge between two vertices v_i and v_(i+1). The contributing
 angle will be:

 angle_i = + pi - epsilon

Page 6 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 (where epsilon denotes a small positive angle.)
 If we shift p over the edge to the outside of the polygon
 (but very near again to the edge)
 the contributing angle will be:

 angle_i = - pi + epsilon'

 The switch of the sign is the reason for the discontinuity (2*pi <-> 0)
 of anglesum for points moving from inside to the outside of the polygon!

 -- --
 Job v. Rango Medizinische Klinik I
 Dipl.-Phys. D-52074 Aachen
 Pauwelsstrasse 30
 Tel. : 049 / (0)241 / 80-89832
 Fax : 049 / (0)241 / 88-88414
 Email: jran@pcserver.mk1.rwth-aachen.de

Subject: Re: determining if a point is "inside" or "outside" a shape
Posted by Job von Rango on Thu, 21 Oct 1999 07:00:00 GMT
View Forum Message <> Reply to Message

Ther is another analytic way to solve the problem:

 How to determine wether a point lies inside an arbitrary 2-dimensional
polygon
 or not?

 IDEA:
 Look at the sum of all angles tended between all pairs of neighboured
vertics
 the polygon and the given point.

 IN DETAIL:
 Assume we have the n vertices of polgons ordered at the positions:
 v_1, v_2, ... ,v_n
 The given point is denoted by p.

 Now connect the given point p with all n neighboured
 vertices, and get the n vectors beginning in p and ending
 in the vertices:

 vec_1 = vector(p_0, v_1)
 ...
 vec_n = vector(p_0, v_n)

Page 7 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3289
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10564&goto=17488#msg_17488
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17488
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Now add all n angles tended between the 2 vectors vec_i and vec_(i+1):

 angle_i = angle(vec_i,vec_(i+1))

 and calculate the sum:
 n
 anglesum = sum angle_i
 i=1

 (Use vec_1 again for vec_(n+1) in the last angle_n)

 RESULT:
 _
 | 2*pi inside
 anglesum = -| if p is the polygon
 |_ 0 outside

 IMPORTANT:
 Take into account the correct sign of the angles
 and use the vertices in ascending order!
 Use e.g. the vector crossproduct:

 vec_i x vec_(i+1)

 in order to retrieve the absolut value |...| for the angle:

 |angle_i| = inv sin(|vec_i x vec_(i+1)|)

 The valid sign for angle_i is given by looking at the scalar product
 of the crossproduct from above and a fixed vector vec_perp, perpendicular
 to the area of the polygon:

 vec_perp * (vec_i x vec_(i+1))
 sign_i = -------------------------------------
 | vec_perp * (vec_i x vec_(i+1)) |

 Now we get the correct value for all angles:

 angle_i = sign_i * |angle_i|

 REMARK:
 Examine the case of a given point inside the polygon, but very near
 to the edge between two vertices v_i and v_(i+1). The contributing

Page 8 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 angle will be:

 angle_i = + pi - epsilon

 (where epsilon denotes a small positive angle.)
 If we shift p over the edge to the outside of the polygon
 (but very near again to the edge)
 the contributing angle will be:

 angle_i = - pi + epsilon'

 The switch of the sign is the reason for the discontinuity (2*pi <-> 0)
 of anglesum for points moving from inside to the outside of the polygon!

 -- --
 Job v. Rango Medizinische Klinik I
 Dipl.-Phys. D-52074 Aachen
 Pauwelsstrasse 30
 Tel. : 049 / (0)241 / 80-89832
 Fax : 049 / (0)241 / 88-88414
 Email: jran@pcserver.mk1.rwth-aachen.de

Subject: Re: determining if a point is "inside" or "outside" a shape
Posted by Randall Frank on Fri, 22 Oct 1999 07:00:00 GMT
View Forum Message <> Reply to Message

I would suggest you read the Graphics FAQ on this issue and also
check Graphics Gem (I think volume 1) for a more detailed explanation
of this problem. The upshot is that there really are three core methods
and many variants. In general, you can sum angles, sum signed areas or
clip a line. There are good code examples of all these approaches on the
net which can be coded into IDL very quickly. It also depends on how
you intend to use the function. If, you are going to repeatedly test many
points, you are better off using one of the sorted variants of the line
clipping techniques. In general, the line clipping techniques are the
fastest on the average, but have poor worst case performance without
the sorting overhead. The angle sum is one of the slowest methods
unless you can get creative and avoid the transcendentals (and you
can). The area sum approach generally falls inbetween. In IDL code,
I believe you can vectorize the latter with some setup overhead, making
it the fastest for .pro code when testing multiple points with one
point per call.

FWIW.

Page 9 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3287
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10564&goto=17479#msg_17479
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17479
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Job von Rango wrote:

> Ther is another analytic way to solve the problem:
>
> How to determine wether a point lies inside an arbitrary 2-dimensional
> polygon
> or not?
>
> IDEA:
> Look at the sum of all angles tended between all pairs of neighboured
> vertics
> the polygon and the given point.
>
> IN DETAIL:
> Assume we have the n vertices of polgons ordered at the positions:
> v_1, v_2, ... ,v_n
> The given point is denoted by p.
>
> Now connect the given point p with all n neighboured
> vertices, and get the n vectors beginning in p and ending
> in the vertices:
>
> vec_1 = vector(p_0, v_1)
> ...
> vec_n = vector(p_0, v_n)
>
> Now add all n angles tended between the 2 vectors vec_i and vec_(i+1):
>
> angle_i = angle(vec_i,vec_(i+1))
>
> and calculate the sum:
> n
> anglesum = sum angle_i
> i=1
>
> (Use vec_1 again for vec_(n+1) in the last angle_n)
>
> RESULT:
> _
> | 2*pi inside
> anglesum = -| if p is the polygon
> |_ 0 outside
>
> IMPORTANT:
> Take into account the correct sign of the angles
> and use the vertices in ascending order!
> Use e.g. the vector crossproduct:
>

Page 10 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> vec_i x vec_(i+1)
>
> in order to retrieve the absolut value |...| for the angle:
>
> |angle_i| = inv sin(|vec_i x vec_(i+1)|)
>
> The valid sign for angle_i is given by looking at the scalar product
> of the crossproduct from above and a fixed vector vec_perp, perpendicular
> to the area of the polygon:
>
> vec_perp * (vec_i x vec_(i+1))
> sign_i = -------------------------------------
> | vec_perp * (vec_i x vec_(i+1)) |
>
> Now we get the correct value for all angles:
>
> angle_i = sign_i * |angle_i|
>
> REMARK:
> Examine the case of a given point inside the polygon, but very near
> to the edge between two vertices v_i and v_(i+1). The contributing
> angle will be:
>
> angle_i = + pi - epsilon
>
> (where epsilon denotes a small positive angle.)
> If we shift p over the edge to the outside of the polygon
> (but very near again to the edge)
> the contributing angle will be:
>
> angle_i = - pi + epsilon'
>
> The switch of the sign is the reason for the discontinuity (2*pi <-> 0)
> of anglesum for points moving from inside to the outside of the polygon!
>
> -- --
> Job v. Rango Medizinische Klinik I
> Dipl.-Phys. D-52074 Aachen
> Pauwelsstrasse 30
> Tel. : 049 / (0)241 / 80-89832
> Fax : 049 / (0)241 / 88-88414
> Email: jran@pcserver.mk1.rwth-aachen.de

--
rjf.

Randall Frank | Email: rjfrank@llnl.gov
Lawrence Livermore National Laboratory | Office: B4525 R8019

Page 11 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

P.O. Box 808, Mailstop:L-560 | Voice: (925) 423-9399
Livermore, CA 94550 | Fax: (925) 422-6287

Page 12 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

