Subject: Re: Given many images, find bounding box Posted by Dick Jackson on Fri, 05 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Herbert wrote:

- > I have many spatially seperated (but maybe overlapped) images patches
- > which I would like to make a big mosaic image with them.

>

- > For each of the patch, I have the coor. (lat, lon) of the upper left
- > hand corner and the # of rows and # of cols. I would like to find the
- > biggerest bounding box that will contain all the patches.

>

- > Can anyone point me to any existing algorithm that will find this
- > bounding box

This is pretty straightforward, but I have to make a few assumptions:

- you have four arrays (lat, lon, rows, cols) containing values for each of your patches
- all four are measured in pixels
- 'lat' increases as you go up, 'lon' increases as you go to the right (no wrapping at lat +/- 90 or lon +/- 180 here, do you need that? My, that would be interesting...)
- you want the *smallest* bounding box that contains the patches

Then the four edges of that bounding box are:

```
left = Min(lon)
top = Max(lat)
right = Max(lon + cols - 1)
bottom = Min(lat - rows + 1)
```

Hope this helps!

Cheers,

-Dick

Dick Jackson Fanning Software Consulting, Canadian Office djackson@dfanning.com Calgary, Alberta Voice/Fax: (403) 242-7398 Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Given many images, find bounding box Posted by hhpt on Fri, 05 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Hi Dick,

Well, this is not correct, for example, if I havbe only one patch, the upper left hand corner has the coordinate (1,10) (lon, lat) and the box has lon_size = 6 and lat_size = 8 then the expected answer should be: left = 1right 7 top = 10bottom = 2but using your formular the answers would be: left = 1right 6 top = 10bottom = 3Also, it will be nice some how if it could take care of the +/- degrees too..... seems tricky.... -- Herbert > This is pretty straightforward, but I have to make a few assumptions: > > - you have four arrays (lat, lon, rows, cols) containing values for each of your patches > - all four are measured in pixels > - 'lat' increases as you go up, 'lon' increases as you go to the right (no wrapping at lat +/- 90 or lon +/- 180 here, do you need that? My, that would be interesting...) > - you want the *smallest* bounding box that contains the patches > Then the four edges of that bounding box are: > > left = Min(lon) > top = Max(lat) > right = Max(lon + cols - 1) > bottom = Min(lat - rows + 1) > Hope this helps! > Cheers, > -Dick > Dick Jackson Fanning Software Consulting, Canadian Office djackson@dfanning.com Calgary, Alberta Voice/Fax: (403) 242-7398 Coyote's Guide to IDL Programming: http://www.dfanning.com/ > > >

Subject: Re: Given many images, find bounding box Posted by Dick Jackson on Sat, 06 Nov 1999 08:00:00 GMT View Forum Message <> Reply to Message >> This is pretty straightforward, but I have to make a few assumptions: >> >> - you have four arrays (lat, lon, rows, cols) containing values >> for each of your patches

- >> all four are measured in pixels
- >> 'lat' increases as you go up, 'lon' increases as you go to the right
- (no wrapping at lat +/- 90 or lon +/- 180 here, do you need that?
- My, that would be interesting...) >>
- you want the *smallest* bounding box that contains the patches
- >> Then the four edges of that bounding box are:
- >> >> left = Min(lon) >> top = Max(lat)
- >> right = Max(lon + cols 1)
- >> bottom = Min(lat rows + 1)

Herbert wrote:

- > Hi Dick,
- >

>

- > Well, this is not correct, for example, if I havbe only one patch,
- > the upper left hand corner has the coordinate (1,10) (lon, lat) and the
- > box has lon size = 6 and lat size = 8
- > then the expected answer should be:
- left = 1
- right 7 >
- top = 10>
- bottom = 2
- > but using your formular the answers would be:
- left = 1>
- right 6 >
- top = 10
- bottom = 3

Clearly, if that's the answer you need, just remove the "+ 1" and "- 1" from the calculations. I notice that your earlier use of 'cols' and 'rows' has changed to lon_size and lat_size. If you are calculating precise

measurements of lat/lon, then of course these would be formulas to use:

```
left = Min(lon)
top = Max(lat)
right = Max(lon + lon_size)
bottom = Min(lat - lat_size)
```

From your original description using 'rows' and 'cols', I was working with another assumption, that all these numbers refer to pixel locations and sizes, and you would use the bounds in order to, say, draw a box that includes all of them. In your example, I took it to mean the pixel at [1,10] is at top-left of the patch, and the patch is 6x8 pixels, thus extending to (counting fingers...) [6,3], *inclusive*. If you use my first calculations, the lines will coincide with the outermost pixels all around. The new calculations would give a box that coincides at top and left, but extends one pixel beyond at right and bottom.

This distinction of pure-measurements vs. pixel-counting is surely one of the greatest sources of off-by-one errors in all computing!

- > Also, it will be nice some how if it could take care of the +/- degrees
- > too..... seems tricky....

I believe the first tricky part is to precisely define the question.

Cheers. -Dick

Dick Jackson Fanning Software Consulting, Canadian Office djackson@dfanning.com Calgary, Alberta Voice/Fax: (403) 242-7398 Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Given many images, find bounding box Posted by Dick Jackson on Mon, 08 Nov 1999 08:00:00 GMT View Forum Message <> Reply to Message

[it seems that my first try at sending this message didn't get out, reposting:]

- >> This is pretty straightforward, but I have to make a few assumptions:

>>

- >> you have four arrays (lat, lon, rows, cols) containing values
- for each of your patches
- >> all four are measured in pixels
- >> 'lat' increases as you go up, 'lon' increases as you go to the right
- (no wrapping at lat +/- 90 or lon +/- 180 here, do you need that?

```
My, that would be interesting...)
>>
>> - you want the *smallest* bounding box that contains the patches
>>
>> Then the four edges of that bounding box are:
>>
>> left = Min(lon)
>> top = Max(lat)
\rightarrow right = Max(lon + cols - 1)
>> bottom = Min(lat - rows + 1)
Herbert wrote:
> Hi Dick.
>
> Well, this is not correct, for example, if I havbe only one patch,
> the upper left hand corner has the coordinate (1,10) (lon, lat) and the
> box has lon_size = 6 and lat_size = 8
>
> then the expected answer should be:
    left = 1
>
    right 7
>
    top = 10
>
    bottom = 2
> but using your formular the answers would be:
    left = 1
>
>
    right 6
    top = 10
>
    bottom = 3
```

Clearly, if that's the answer you need, just remove the "+ 1" and "- 1" from the calculations. I notice that your earlier use of 'cols' and 'rows' has changed to lon_size and lat_size. If you are calculating precise measurements of lat/lon, then of course these would be formulas to use:

```
left = Min(lon)
top = Max(lat)
right = Max(lon + lon_size)
bottom = Min(lat - lat_size)
```

From your original description using 'rows' and 'cols', I was working with another assumption, that all these numbers refer to pixel locations and sizes, and you would use the bounds in order to, say, draw a box that includes all of them. In your example, I took it to mean the pixel at [1,10] is at top-left of the patch, and the patch is 6x8 pixels, thus extending to (counting fingers...) [6,3], *inclusive*. If you use my first calculations, the lines will coincide with the outermost pixels all around. The new calculations would give a box that coincides at top and left, but extends one pixel beyond at right and bottom.

This distinction of pure-measurements vs. pixel-counting is surely one of the greatest sources of off-by-one errors in all computing!

- > Also, it will be nice some how if it could take care of the +/- degrees
- > too..... seems tricky....

I believe the first tricky part is to precisely define the question.

--Cha

Cheers,

-Dick

Dick Jackson Fanning Software Consulting, Canadian Office djackson@dfanning.com Calgary, Alberta Voice/Fax: (403) 242-7398 Coyote's Guide to IDL Programming: http://www.dfanning.com/