Subject: Inheritance query
Posted by Bernard Puc on Thu, 04 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Hello

For the object programming gurus: I'm creating a class called data.
I'm then creating subclasses of data called typel, type2, etc. The
typel class inherits the data class attributes. Now, is it possible to
inherit, lets say, the data::INIT method and somehow add to it? Or, do
| have to write an entirely new INIT method for typel class which
incorporates the statements in the data::INIT method?

Bernard Puc AETC, INC.
bpuc@va.aetc.com 1225 Jefferson Davis Highway #800
(703) 413-0500 Arlington, VA 22202

Subject: Re: Inheritance query
Posted by J.D. Smith on Wed, 10 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Bernard Puc wrote:
Hello

>

>

>

> For the object programming gurus: I'm creating a class called data.
> I'm then creating subclasses of data called typel, type2, etc. The

> typel class inherits the data class attributes. Now, is it possible to

> inherit, lets say, the data::INIT method and somehow add to it? Or, do
> | have to write an entirely new INIT method for typel class which

> incorporates the statements in the data::INIT method?

By default, all methods are inherited. To add to the method, you need to "chain
up" to the superclass, like this:

function SubClass::Init, EXTRA=e
if (self->SuperClass::Init(EXTRA=e) ne 1) then return,0
;;; do more stuff
return,1

end

This is called "extending" a method, and works for any method, not just Init.
If you don't chain up, it's called "overriding” a method (which will never be
called then). If you omit Init altogether, SuperClass::Init is called
automatically, which | call "defaulting".

Page 1 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2420
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10621&goto=17640#msg_17640
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17640
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10621&goto=17775#msg_17775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

A note on where to chain: you generally want to chain-up first in Init, and
last in Cleanup. In other methods, you'll have to choose the best place to
chain.

Most good designs will have a fair number of defaulting, fewer extending, and a
small number of overriding methods. Overridden methods represent new code which
doesn't benefit from the work done in making its superclasses. | could inherit

a class called "Autos" into my new class "FlatWare", override every single

method from Autos, and never even know it was there.... clearly not too useful.

This is not to say that overriding doesn't have its purposes though.

Good Luck,

JD

J.D. Smith [*I] WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Subject: Re: Inheritance query
Posted by J.D. Smith on Wed, 10 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

"J.D. Smith" wrote:

>

> Bernard Puc wrote:

>>

>> Hello

>>

>> For the object programming gurus: I'm creating a class called data.
>> |I'm then creating subclasses of data called typel, type2, etc. The

>> typel class inherits the data class attributes. Now, is it possible to

>> inherit, lets say, the data::INIT method and somehow add to it? Or, do
>> | have to write an entirely new INIT method for typel class which

>> incorporates the statements in the data::INIT method?

By default, all methods are inherited. To add to the method, you need to "chain
up" to the superclass, like this:

function SubClass::Init, EXTRA=e
if (self->SuperClass::Init(EXTRA=e) ne 1) then return,0
;;; do more stuff
return,1

VVVVYVYVYVYV

Page 2 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10621&goto=17776#msg_17776
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17776
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> end
>

One more tip: make good use of the REF_EXTRA mechanism for chaining up to
methods which should return something:

pro SubClass::GetProperty,VALUE=val, REF_EXTRA=e
val=self.value

SuperClass::GetProperty, EXTRA=e

end

This allows the SuperClass's GetProperty Method to put things into variables for
return (like properties of the SuperClass, which aren't always just data
member!), impossible with the _EXTRA mechanism.

JD

J.D. Smith [*I] WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Subject: Re: Inheritance query
Posted by Struan Gray on Thu, 11 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz, m218003@modell3.dkrz.de writes:

> why do you use _REF_EXTRA in the procedure header
> but then pass it on to SuperClass via _EXTRA?

| freely admit that | don't understand the help files for EXTRA
and REF_EXTRA. | found by trial and error that the way | do it in my
SLFoWid examples allows extra keywords to be passed through to
procedures *and* for the results to be passed back to the main program
level. That is, if you have three procedures:

pro level3, result3=result3, _ref_extra=extra
result3=3
end

pro level2, result2=result2, ref extra=extra
result2=2
level3, extra=extra

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10621&goto=17770#msg_17770
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17770
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

end

pro levell, resultl=resultl, ref extra=extra

resultl=1
levell, extra=extra
end

and call: levell, resultl=resultl, result2=result2, result3=result3
you end up with the expected numbers in result1,2,3.

The downside is that the intermediate procedures have no access to
keywords other than their own (ie, in level2, the variable result3 is
undefined, even after the call to level3). In object programming this
enforces a tidy programming style, where parameters are only dealt
with at the object level where they are declared, but in general that
might be too strong a restriction and then the only cure (that |
found) is to add the wanted keywords to the intermediate procedures
explicitly.

Struan

Subject: Re: Inheritance query
Posted by m218003 on Thu, 11 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

In article <3829BEB9.A3D2D3A6@astro.cornell.edu>,

"J.D. Smith" <jdsmith@astro.cornell.edu> writes:

>

One more tip: make good use of the REF_EXTRA mechanism for chaining up to
methods which should return something:

pro SubClass::GetProperty,VALUE=val, REF_EXTRA=e
val=self.value

SuperClass::GetProperty, EXTRA=e

end

This allows the SuperClass's GetProperty Method to put things into variables for
return (like properties of the SuperClass, which aren't always just data
member!), impossible with the _EXTRA mechanism.

JD

VVVVVVVYVYVYVYVYVYVYV

Thanks JD for bringing this up! | am just experimenting a little bit

Page 4 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3205
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10621&goto=17771#msg_17771
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17771
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

with objects myself, and came across this _REF_EXTRA in -- | think it was
Struan's -- code. What | don't understand is: why do you use
_REF_EXTRA in the procedure header but then pass it on to SuperClass
via _EXTRA? | tried to follow the online help on this but couldn't really

find an answer. Is it simply syntax convention that one *always* uses
_EXTRA when calling the routine that accepts EXTRA or REF_EXTRA
keywords? Or is there more to it?

Cheers,
Martin

L

[[Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie [[

([Bundesstr. 55, 20146 Hamburg l
([phone: +49 40 41173-308 [l

[l fax: +49 40 41173-298 1

[[martin.schultz@dkrz.de [l

Lo teeeee

Subject: Re: Inheritance query
Posted by J.D. Smith on Mon, 15 Nov 1999 08:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz wrote:

>
> In article <3829BEB9.A3D2D3A6@astro.cornell.edu>,
> "J.D. Smith" <jdsmith@astro.cornell.edu> writes:
>>

>> One more tip: make good use of the REF_EXTRA mechanism for chaining up to
>> methods which should return something:

>>

>> pro SubClass::GetProperty,VALUE=val, REF_EXTRA=e
>> val=self.value

>> SuperClass::GetProperty, EXTRA=e

>> end

>>

>> This allows the SuperClass's GetProperty Method to put things into variables for
>> return (like properties of the SuperClass, which aren't always just data

>> member!), impossible with the _EXTRA mechanism.

>>

>> JD

>>

>

Page 5 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10621&goto=17851#msg_17851
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=17851
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Thanks JD for bringing this up! | am just experimenting a little bit

> with objects myself, and came across this _REF_EXTRA in -- | think it was
> Struan's -- code. What | don't understand is: why do you use

> REF_EXTRA in the procedure header but then pass it on to SuperClass
> via _EXTRA? | tried to follow the online help on this but couldn't really

> find an answer. Is it simply syntax convention that one *always* uses

> EXTRA when calling the routine that accepts _EXTRA or _REF_EXTRA
> keywords? Or is there more to it?

Martin,

When | began asking RSI for a by-reference keyword mechanism, | fully expected

it to be invisible... i.e. to occur using the existing _EXTRA mechanism. In a

series of discussions with the RSI programmer who wrote _REF_EXTRA last year, |
gained an understanding of why _REF_EXTRA is the way it is. You can search on
"IDL v5.1 impressions" for the full thread. The basic synopsis and a few things

I've learned by experience:

* REF_EXTRA was needed to preserve backwards compatibility with older code
which often uses explicitly the fact that the "extra" variable was a structure

with a certain format in the intermediate routine. People were commonly making
their own "extra" structs, or modifying them in transit. It could be argued

that this is outside the scope of what EXTRA was intended to address.

* REF_EXTRA need only be used in the definition of the routine for which
by-reference inherited keywords are wanted. l.e. if a routine wants to pass a
value back to its caller through an unspecified keyword whose value will be
obtained from another routine called there, it must be defined with _REF_EXTRA.
Example:

pro r3, R3_VAL=g
g=81
end

pror2, R2_VAL=g, REF_EXTRA=re
g=42

r3,_EXTRA=re

end

prorl, R1 VAL=g, REF_EXTRA=re
g=8

r2, EXTRA=re

end

r1, R1_VAL=v1,R2 VAL=v2,R3_VAL=v3

Here we wanted to put a value in v1,v2,and v3, from routines called at various
depths down in the calling heirarchy. See below for an explanation of the

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

various uses of REF_EXTRA and _EXTRA.

*For any routine *calling* syntax, the plain old EXTRA can and should be used,

and IDL will automatically *know* whether you're using the new or the old

method. This is confusing, but saves having to go through all old code and

update EXTRA->_REF_EXTRA in the calling sequences. RSI could have required all
_REF_EXTRA's to be used in definitions and calling sequences symmetrically, but
they spared us that agony (though not the resultant confusion).

* Having said that, if you are never "peeking behind the curtain” in your

inherited keyword routines -- are never modifying or changing or creating from
scratch the standard extra structure, but just simply passing them through to

one or more subsidiary routines -- you can simply use _REF_EXTRA in routine
definitions always. It's much faster than _EXTRA, and has the nice properties

of by reference that it should have had in the first place, using exactly the

same rules as arguments and normal keywords do. | think of REF_EXTRA as the
way EXTRA should have been done in the first place.

* Inside the routine with a definition including _REF_EXTRA=re, the variable re
is a string array with the names of the extra keywords passed. The *values* are
nowhere to be found... they are invisible, and only accessible by those routines
called from this routine with _EXTRA=re.

* Never *call* a routine with REF_EXTRA. It will compile and run, but it
probably won't do what you want (it greedily "eats" all keywords it can and
doesn't let the called routine see any). This is a shame, since we can't really
tell people to abandon the _EXTRA keyword altogether. At least it's shorter to

type.

Anyway, hope this was clear. It's really more complicated than it could have
been, but sometimes you've just got to make do.

JD

J.D. Smith [*I] WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-6263
304 Space Sciences Bldg. [*| FAX: (607) 255-5875
Ithaca, NY 14853 [*|

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

