
Subject: discrete cosine transform
Posted by kremasti on Tue, 14 Dec 1999 08:00:00 GMT
View Forum Message <> Reply to Message

hi all !

Im looking for an algorithm for the discrete cosine transform ( and
for the inverse discrete cosine transform ) ,
can anybody help ?
Iï¿½ve looked in several pages in the net , but I couldnï¿½t  found
anything  , 

thanks in advance 

eva

Subject: Re: discrete cosine transform
Posted by Peter Mason on Fri, 17 Dec 1999 08:00:00 GMT
View Forum Message <> Reply to Message

kremasti@sbox.tu-graz.ac.at (eva) wrote:
>  Im looking for an algorithm for the discrete cosine transform ( and
>  for the inverse discrete cosine transform ) ,
>  can anybody help ?

Hi Eva,
Well it's been a couple of days now and no tug on the line;  let's see
if my little arm-waving interlude here will coax out a response from
someone who knows their stuff :-)
The discrete cosine transform (DCT) of a 1D real function "FUNC" is
really little more than a discrete fourier transform (DFT) of FUNC
after it has been rigged to be even (symmetrical about the Y axis).
Because the rigged function is even, the sine terms (the imaginary
part) of its fourier transform are all zero, leaving only the (real)
cosine terms.   Although there are routines to do a DCT directly, you
can therefore also get it via a DFT by doubling up the function to make
it even, doing DFT, tossing out the imaginary part, and doing a bit of
scaling.   Now there's more than one way to double up a 1D real
function, but I gather that one particular way is accepted in
practice.   I think I have it implemented in my example code below, but
I'm not entirely certain.   Anyway, appended is an impersonation of a
1D forward and reverse DCT routine.   There's a scaling factor of 2
missing somewhere that I haven't been able to track down (i.e., the
zeroth term is supposed to be the function's average but it's off by a
factor of 2), but the transform *is* properly reversible.
If you want a 2D DCT of a matrix MAT, you can apply this routine across
the rows of MAT to get MAT_1, and then apply it down the columns of

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3179
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10834&goto=18183#msg_18183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=18183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1501
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=10834&goto=18286#msg_18286
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=18286
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


MAT_1 to get MAT_DCT (as you could do with a 1D fourier transform
routine to get a 2D fourier trnasform).   If you did this, though,
you'd probably want to move some of the calculations out of the routine
below in order to do them only once.

Cheers
Peter Mason
ICQ: 29778826

 ;=========================================================== ===
function sad_FCT,arr,direc
;Slow-and-dirty 1D Cosine Transform (but real and reversible)
;Set direc=-1 for a forward transform and direc=1 for reverse.
n=n_elements(arr)
b=reform(arr,n)
even_el=lindgen(long(n-1)/2+1)*2
odd_el=rotate((even_el+1),2)
if ((n mod 2) ne 0) then odd_el=odd_el(1:n_elements(odd_el)-1)
if (direc lt 0) then begin  ;FORWARD
  w=2.0*exp((cindgen(n)*complex(0,-1)*!pi)/(2.0*n))
  b=complex(b([even_el,odd_el]))
  b=fft(b,-1,/overwrite)
  return,float(b*w)
endif else begin  ;REVERSE
  w=0.5*exp((cindgen(n)*complex(0,1)*!pi)/(2.0*n))
  c=[0.0,b(n-1-lindgen(n-1))]
  b=complex(b,-c)*w
  b=fft(b,1,/overwrite)
  j=fltarr(n)
  j([even_el,odd_el])=float(b)
  return,j
endelse
end
 ;=========================================================== ===

Sent via Deja.com http://www.deja.com/
Before you buy.

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

