Subject: Efficient IDL programming
Posted by dean on Thu, 02 Dec 1993 23:08:18 GMT

View Forum Message <> Reply to Message

| would like to thank everbody who responded to my request for help in
"extracting bits from bytes". Below is a test PRO that | made to read in
the graphic file. It reads, converts, expands, enhances, and reverses my
file (from (512,64) to (512,512)) in about 30 seconds.

| started with DEC2BIN.PRO posted by Bill Thompson. This worked, but it
took awhile to go thru 32,768 calculations. Both Chris Chase and Dr. Marty
Ryba suggested "masks" which speed things up considerably.

| just wanted to check to see if anyone would know if | can illiminated
the FOR DO BEGIN loops to make this PRO a little more efficient.

Thanks again guys,

Kelly Dean

pro test
head = bytarr(56)
premature_ EOF =1
ON_IOERROR, SHORT_GRF

; Read "in house" graphic file.

OPENR, unit, 'dtopo:gms512.grf', /GET_LUN
READU, unit, head

chead = STRING(head)

ck_imx = STRMID(chead,0,6)

; Verify that it is an IMX graphic file before proceeding

IF (ck_imx EQ '%IMAGE') THEN BEGIN $
head_Igth = STRMID(chead,28,7)

IF (head_lgth GT 56) THEN BEGIN $
rem_head = bytarr(head_lgth-56)
READU, unit, rem_head

ENDIF

xsize = strmid(chead,36,6)

ysize = strmid(chead,43,6)

imxgrf = bytarr(xsize,ysize/8)

graphic = bytarr(xsize,ysize)

readu, unit, imxgrf

premature_EOF =0

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=299
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1116&goto=1508#msg_1508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=1508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

SHORT_GRF: IF premature_ EOF THEN PRINT, 'Short graphic'
close, unit

: Create mask.

tmp = lindgen(8)
mask = 2LA"tmp

; Expand array(xsize,ysize/8) to array(xsize,ysize).

yyy =0
FORy = 0,(ysize/8)-1 DO BEGIN
xxx =0
FOR x = 0,xsize-1 DO BEGIN
IF (xxx EQ xsize) THEN BEGIN $
XXX =0
yyy =yyy +1
ENDIF
; Perform the conversion (Dr. Marty Ryba (MIT) suggestion).
graphic(xxx,yyy) = (imxgrf(x,y) and mask) ne 0
XXX = XXX + 8
ENDFOR

yyy =yyy +1
ENDFOR

; Enhance value so you can see it and reverse image, then display.

graphic(Where(graphic EQ 001b)) = 244b
graphic = rotate(graphic,7) ; Transpose 270 deg, (X0,-Y0)
tv, graphic
ENDIF
END

Subject: Re: Efficient IDL programming (use outer product)
Posted by chase on Mon, 06 Dec 1993 17:51:47 GMT

View Forum Message <> Reply to Message

>>>> > "dean" == dean <dean@phobos.cira.colostate.edu> writes:
dean> | just wanted to check to see if anyone would know if | can
dean> illiminated the FOR DO BEGIN loops to make this PRO a little
dean> more efficient.

dean> Thanks again guys,

dean> Kelly Dean

Page 2 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1116&goto=1597#msg_1597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=1597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

[Kelly wants to efficiently decode a "packed"” bit array back into an
"unpacked" bit array.]

Here is something you can try.

For efficiency, what you need is a general outer product that can use
any binary operator, e.g., AND. IDL's outer product "#" uses only
multiplication (see comments at end). Fortunately, you can decode
your bytes into the corresponding bit patterns using multiplication.

Suppose A=bytarr(512,64) contains your data. Then you can obtain your
bit patterns as such:

mask = 2B"indgen(8)
B = bytarr(512,512)
A = transpose(A) ; Put the 64 bytes along the rows.

B(*) = (byte(mask#A(*))/128B)(*)

Here is a smaller example that takes an array of 16 rows of 2 bytes
each and decodes the bits into a 16 by 16 byte array:

IDL> mask = 27indgen(8)

IDL> z=(bindgen(2)+1)#(bindgen(16)+3)

IDL> help,z

Z LONG = Array(2, 16)

IDL> b=bytarr(16,16)

IDL> b(*) = (byte(mask#z(*))/128b)(*)

;; Unfortunately "#" always seems to convert the types of its operands
;; to LONG before performing the outer product (I would call this

;; unexpected behavior). Hence the byte() conversion _before_ the

;» division.

IDL> help,b

B BYTE = Array(16, 16)

IDL> print,b

00000011 O0OO0OO0OO0OO0ODI1ITTZ1IO
00000100 OOOO0O1O0O00O0
00000101 0OO0OO0OO0O1IO0110O0
00000110 O0OO0OO0OO0O11O00
00000111 00001110
00001000 OOO10O0O0OO0
00001001 000100110
00001010 00010100
00001011 00010110
00001100 0OO0OO0O11000

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

OO OO0OO0OO0o
oNeoNeoNolNoNe
OO OO0OO0OO0o
PR, PFPOOO
oNoNol i N
oNoNel Il
POORFrREFRO
OFrRrOPFrOPRr
oNeoNoNolNoNe
OO OO0OO0OO0o
PR, PFPOOO
oNoNoll N
oNoNel Il
RPOORrREFRO
ol Nel Nel o
OO OO0OO0OO0o

;; Space inserted

IDL> print,z

3 6
4 8
5 10
6 12
7 14
8 16
9 18
10 20
11 22
12 24
13 26
14 28
15 30
16 32
17 34
18 36

If the bits need to go in the opposite order (LSB first), just reverse
the mask array.

IDL Comments/musing/wishful thinking:

| would like to see two "APL'-like operators in IDL for dealing with

vectors and matrices:

1) outer products - using a given binary operator.

2) reduction - apply a scalar valued function along one dimension of
an array (works like TOTAL function when using the dimension
parameter). For example, return the maximum of each row of a
maxtrix.

It seems that | was constantly implementing these types of operations

on arrays using FOR loops, especially reduction. (The FOR loops can

make execution _slow_). These can be implemented as functions using
CALL_FUNCTION for reduction and EXECUTE for outer products. However,
these implementations are not nearly efficient as builtin

implementations could be.

A general outer product could be added to IDL by a simple addition to

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the syntax similar to the MATLAB "./" operator for element by element
division. For example, IDL could use the "#" as prefix notation to an
operator, e.g.:

X #+y
X #and 'y
X #H<Yy

where "#bop" between two vectors means perform an outer product using
“bop' instead of multiplication.

| suppose this is just syntactic sugar and not necessary.

NOTE: If anyone is interested in my OUTER and REDUCE IDL functions
implementing outer products and reduction just ask and I will email
them to you.

Chris

P.S. | am interested in comments/bugs with idl.el and idl-shell.el.
Send them my way.

Bldg 24-E188

The Applied Physics Laboratory
The Johns Hopkins University
(301)953-6000 x8529
chris_chase@jhuapl.edu

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

