
Subject: Efficient IDL programming
Posted by dean on Thu, 02 Dec 1993 23:08:18 GMT
View Forum Message <> Reply to Message

I would like to thank everbody who responded to my request for help in
 "extracting bits from bytes". Below is a test PRO that I made to read in
 the graphic file. It reads, converts, expands, enhances, and reverses my
 file (from (512,64) to (512,512)) in about 30 seconds.

 I started with DEC2BIN.PRO posted by Bill Thompson. This worked, but it
 took awhile to go thru 32,768 calculations. Both Chris Chase and Dr. Marty
 Ryba suggested "masks" which speed things up considerably.

 I just wanted to check to see if anyone would know if I can illiminated
 the FOR DO BEGIN loops to make this PRO a little more efficient.

 Thanks again guys,

 Kelly Dean

 ==
===================
pro test
 head = bytarr(56)
 premature_EOF = 1
 ON_IOERROR, SHORT_GRF
;
; Read "in house" graphic file.
;
 OPENR, unit, 'dtopo:gms512.grf', /GET_LUN
 READU, unit, head
 chead = STRING(head)
 ck_imx = STRMID(chead,0,6)
;
; Verify that it is an IMX graphic file before proceeding
;
 IF (ck_imx EQ '%IMAGE') THEN BEGIN $
 head_lgth = STRMID(chead,28,7)
 IF (head_lgth GT 56) THEN BEGIN $
 rem_head = bytarr(head_lgth-56)
 READU, unit, rem_head
 ENDIF
 xsize = strmid(chead,36,6)
 ysize = strmid(chead,43,6)
 imxgrf = bytarr(xsize,ysize/8)
 graphic = bytarr(xsize,ysize)
 readu, unit, imxgrf
 premature_EOF = 0

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=299
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1116&goto=1508#msg_1508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=1508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 SHORT_GRF: IF premature_EOF THEN PRINT, 'Short graphic'
 close, unit
;
; Create mask.
;
 tmp = lindgen(8)
 mask = 2L^tmp
;
; Expand array(xsize,ysize/8) to array(xsize,ysize).
;
 yyy = 0
 FOR y = 0,(ysize/8)-1 DO BEGIN
 xxx = 0
 FOR x = 0,xsize-1 DO BEGIN
 IF (xxx EQ xsize) THEN BEGIN $
 xxx = 0
 yyy = yyy + 1
 ENDIF
; Perform the conversion (Dr. Marty Ryba (MIT) suggestion).
 graphic(xxx,yyy) = (imxgrf(x,y) and mask) ne 0
 xxx = xxx + 8
 ENDFOR
 yyy = yyy + 1
 ENDFOR
;
; Enhance value so you can see it and reverse image, then display.
;
 graphic(Where(graphic EQ 001b)) = 244b
 graphic = rotate(graphic,7) ; Transpose 270 deg, (Xo,-Yo)
 tv, graphic
 ENDIF
END

Subject: Re: Efficient IDL programming (use outer product)
Posted by chase on Mon, 06 Dec 1993 17:51:47 GMT
View Forum Message <> Reply to Message

>>>> > "dean" == dean <dean@phobos.cira.colostate.edu> writes:

dean> I just wanted to check to see if anyone would know if I can
dean> illiminated the FOR DO BEGIN loops to make this PRO a little
dean> more efficient.

dean> Thanks again guys,

dean> Kelly Dean

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=1116&goto=1597#msg_1597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=1597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

[Kelly wants to efficiently decode a "packed" bit array back into an
"unpacked" bit array.]

Here is something you can try.

For efficiency, what you need is a general outer product that can use
any binary operator, e.g., AND. IDL's outer product "#" uses only
multiplication (see comments at end). Fortunately, you can decode
your bytes into the corresponding bit patterns using multiplication.

Suppose A=bytarr(512,64) contains your data. Then you can obtain your
bit patterns as such:

mask = 2B^indgen(8)

B = bytarr(512,512)

A = transpose(A) ; Put the 64 bytes along the rows.

B(*) = (byte(mask#A(*))/128B)(*)

Here is a smaller example that takes an array of 16 rows of 2 bytes
each and decodes the bits into a 16 by 16 byte array:

IDL> mask = 2^indgen(8)
IDL> z=(bindgen(2)+1)#(bindgen(16)+3)
IDL> help,z
Z LONG = Array(2, 16)
IDL> b=bytarr(16,16)
IDL> b(*) = (byte(mask#z(*))/128b)(*)
;; Unfortunately "#" always seems to convert the types of its operands
;; to LONG before performing the outer product (I would call this
;; unexpected behavior). Hence the byte() conversion _before_ the
;; division.
IDL> help,b
B BYTE = Array(16, 16)
IDL> print,b
 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0
 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0
 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0
 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0
 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0
 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0
 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0
 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0
 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0
 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
;; Space inserted
IDL> print,z
 3 6
 4 8
 5 10
 6 12
 7 14
 8 16
 9 18
 10 20
 11 22
 12 24
 13 26
 14 28
 15 30
 16 32
 17 34
 18 36

If the bits need to go in the opposite order (LSB first), just reverse
the mask array.

IDL Comments/musing/wishful thinking:

I would like to see two `APL'-like operators in IDL for dealing with
vectors and matrices:
1) outer products - using a given binary operator.
2) reduction - apply a scalar valued function along one dimension of
 an array (works like TOTAL function when using the dimension
 parameter). For example, return the maximum of each row of a
 maxtrix.

It seems that I was constantly implementing these types of operations
on arrays using FOR loops, especially reduction. (The FOR loops can
make execution _slow_). These can be implemented as functions using
CALL_FUNCTION for reduction and EXECUTE for outer products. However,
these implementations are not nearly efficient as builtin
implementations could be.

A general outer product could be added to IDL by a simple addition to

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the syntax similar to the MATLAB "./" operator for element by element
division. For example, IDL could use the "#" as prefix notation to an
operator, e.g.:

 x #+ y
 x #and y
 x #< y

where "#bop" between two vectors means perform an outer product using
`bop' instead of multiplication.

I suppose this is just syntactic sugar and not necessary.

NOTE: If anyone is interested in my OUTER and REDUCE IDL functions
implementing outer products and reduction just ask and I will email
them to you.

Chris

P.S. I am interested in comments/bugs with idl.el and idl-shell.el.
Send them my way.

--
===============================
Bldg 24-E188
The Applied Physics Laboratory
The Johns Hopkins University
(301)953-6000 x8529
chris_chase@jhuapl.edu

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

