Subject: Re: Converting 8-bit image + pallete to 24 bit image with alpha channel
Posted by davidf on Thu, 09 Mar 2000 08:00:00 GMT

View Forum Message <> Reply to Message

Ricardo Fonseca (zamb@physics.ucla.edu) writes:

I'm trying to convert an 8-bit grayscale image to a 24 bit image with an
alpha channel, mapping the colors of the 8-bit image through a palette.
Right now I'm doing it like this:

CT=23
LoadCT,CT
TVLCT, rr, gg, bb, /get

Data = BytScl(Abs(Data), MAX = max, MIN = min)
s = Size(Data)

Alphalmage = BytArr(4, s[1], s[2])
Alphalmagel0,*,*] = rr(Data[*,*])

Alphalmage[1,*,*] = gg(Data[*,*])
Alphalmage[2,*,*] = bb(Data[*,*])
Alphalmage[3,*,*] = 128

Which works, but | was wondering if there was a more efficient way of doing
this. Can anyone help?

VVVVVVVVVYVVVVYVYVYVYVYV

That's about the size of it, I'm afraid. :-(
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: Converting 8-bit image + pallete to 24 bit image with alpha channel
Posted by Struan Gray on Fri, 10 Mar 2000 08:00:00 GMT

View Forum Message <> Reply to Message

Ricardo Fonseca, zamb@physics.ucla.edu writes:

> Alphalmage = BytArr(4, s[1], s[2])
> Alphalmage[0,*,*] = rr(Data[*,*])
> Alphalmage[l,*,*] = gg(Data[*,*])

Page 1 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11352&goto=19308#msg_19308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11352&goto=19304#msg_19304
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19304
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Alphalmage[2,*,*] = bb(Data[*,*])
> Alphalmage[3,*,*] = 128

It is often faster to construct the array directly than to
construct and empty array and fill the planes:

TVLCT, rr, gg, bb, /get
data = bytscl(dist(200))
s = Size(Data)

alphachannel = make_array(size=s, value=128b)
Alphalmage?2 = [rr(Data), gg(Data), bb(Data), alphachannel]
alphaimage?2 = reform(alphaimage2, s[1], 4, s[2], /overwrite)
alphaimage?2 = transpose(alphaimage2, [1,0,2])

It is not as easy to see what is going on here, but on my machines
it is three to four times faster.

The last transpose step is necessary because of the way IDL orders
array elements in memory (as is the order of the dimensions in the
reform line). With 3-channel images you can usually avoid the
transpose step if you correctly use the TRUE or INTERLEAVE
keyword/properties of plotting routines or image objects. | haven't
used alpha channels much, and the help files are opaque, so | don't
know if you can set an interleave for a four channel image - if you
can, the transpose step can be omitted here too.

Struan

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

