Subject: pointer to structures
Posted by eeeyler on Tue, 04 Apr 2000 07:00:00 GMT

View Forum Message <> Reply to Message

suppose | wish to create a structure and wish to reference that
structure and its contents via a pointer:
filter=ptr_new({points:['a’,'b"],ptl_value:200, pt2_value:'X_WHYLOG'")
how do | reference the points array? | thought it would be as:

print, *filter.points

but | get the message

%Expression must be a structure in this context: Filter

Thank you for your help!

Sent via Deja.com http://www.deja.com/
Before you buy.

Subject: Re: pointer to structures
Posted by davidf on Thu, 06 Apr 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Liam E.Gumley (Liam.Gumley@ssec.wisc.edu) writes:

> A very reasonable argument. | strive for readability and consistency

> before flexibility, because it allows me to come back to my source code
> after a weeks vacation and figure out what the heck | was doing before |
> |eft.

One of the reasons | always give my wife for not taking

vacations is that not only do | lose a week of income

while I'm traveling, but | lose three weeks of income

when | get back trying to re-learn everything | used to

know about IDL. :-(

Cheers,
David

P.S. Let's just say those poor soul's signed up for

the next Advanced IDL Programming course in the UK
in June are in for it. That course falls smack in

the middle of a tour of German beer gardens and a
trip to Wembledon. They don't stand a chance.

"Uh, IDL!? Something to do with Cobra, I think." :-(

On the other hand, that might be one of the most
entertaining courses I've taught in a long time. :-)

Page 1 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3487
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11480&goto=19569#msg_19569
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19569
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11480&goto=19669#msg_19669
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19669
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: pointer to structures
Posted by Liam E. Gumley on Thu, 06 Apr 2000 07:00:00 GMT

View Forum Message <> Reply to Message

"J.D. Smith" wrote:

>

> "Liam E.Gumley" wrote:

>>

>> "J.D. Smith" wrote:

>>>

>>> "Liam E.Gumley" wrote:

>>>>

>>>> "J.D. Smith" wrote:

>>>> > With time, you will get used to these semantics. They seem arcane, but
>>>> > eventually it becomes somewhat readable to the experienced eye. Of course, I've
>>>> > struggled with statements like:

>>>> >

>>>> > HEADER=*(*(*self.DR)[sel[i]. HEADER)

>>>>

>>>> | neglected to provide an example of why simplified pointer and

>>>> structure referencing is desirable. Thanks for the help JD!

>>>>
>>>> ;)
>>>>

>>>> Cheers,
>>>> Liam.
>>>

>>> But then you have to ask yourself which is worse, the confusing string above, or
>>> the explicit:

>>>

>>> drs_ptr=self.DR

>>> drs=*drs_ptr

>>> this=drs[selli]]

>>> hd_arr_ptr=*this

>>> hd=*hd_arr_ptr

>>>

>>> repeat this about 5000 times throughout your application, and you begin to
>>> appreciate the terse form above. Especially if you're passing some part of the
>>> nested data to a routine by reference... intermediate variables require you to

Page 2 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11480&goto=19671#msg_19671
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=19671
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> remember to assign them after use (everybody remember

>>> widget_control,stash,set _uvalue=state,/NO_COPY?).

>>

>> | would not repeat this code 5000 times. I'd find a way to encapsulate
>> it in a function where | can include comments and error checking (e.g.
>> |s this a valid pointer? Does it point to a defined variable?). In these
>> cases | find it much better to create a 'put’ and 'get' function pair

>> where all the de-referencing is handled inside the function. That way |
>> can use the 'put’' and 'get' modules all over the place, and if | change
>> the way the pointers/structures are nested, | only have to change the
>> code in two places (inside the functions).

The problem with this is code inflation. If you want to manipulate parts of

your data structure in place, you need direct access to a pointer or some other
by reference value. If you choose to pass pointer values to all intermediate
routines, you are in a sense compromising the very data structure encapsulation
you are attempting to achieve. What if later it became a list of pointers?

With the put/set paradigm, you are limited in the ways helper functions can
interact with your data structure, and you are forced to wrap each call:

get,My_Var=mv
do_something,mv
put,My_Var=mv

reminiscent of the example stash variable | gave. This is not necessarily a bad
idea. Especially now that we have _REF_EXTRA so that incorporating overloaded
get/put methods in an object hierarchy is possible. But it yields consistency

at the price of flexibility. Sometimes this is a good tradeoff, perhaps even

more times than most people would be inclined to think. In other situations, a
more carefully designed data structure can give you the procedural flexibility

you need without compromising future design revisions. There is room for both
styles of design in your toolchest.

VVVVVVVVVVVVVVVVYVYVYVYVYV

A very reasonable argument. | strive for readability and consistency
before flexibility, because it allows me to come back to my source code
after a weeks vacation and figure out what the heck | was doing before |
left.

Cheers,
Liam.

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

