Subject: Re: include file?
Posted by promashkin on Thu, 29 Jun 2000 07:00:00 GMT

View Forum Message <> Reply to Message

JD, as always, put out every word of wisdom out there in a single,
comprehensive message. This is how we all should write, but no, we have
our preferred ways of doing things, and send them out as advice :-(

Cheers,
Pavel

Subject: Re: include file?
Posted by John-David T. Smith on Thu, 29 Jun 2000 07:00:00 GMT

View Forum Message <> Reply to Message

As you can see from the various postings, there are a variety of ways to include
data "globally" to be shared among many routines, all of which I use in some
form. Each has it's strengths and weaknesses. In case people are confused by
which they should select, | thought I'd outline the various
advantages/disadvantages of each:

1. Variables in an include File (@filename)

* Advantages: Easy access to variables. Values can be initialized

within the file itself, and need no explicit initialization. Any arbitrary code

can execute, not just variable setting. This can be especially convenient when
used in concert with common blocks (see below).

* Disadvantages: Changes in the values cannot be shared among routines or
multiple calls to a single routine -- works best for read-only constants and/or
shared code segments. Updating the value requires recompiling each including
routine, or restarting the session.

2. System variables ('FOO).
* Advantages: Available everywhere for both reading and writing.

* Disadvantages: Difficulty setting -- IDL used to validate system variables at
compile time, which means you'd need to define them with "defsysv" *before* any
routine referencing them was compiled. At least with version 5.3, validity
checking is done at run time, eliminating this problem. Once a system variable

is defined, much like a named structure, it cannot be redefined with a different
data type or size in that session. Each system variable you define must be
initialized explicitly.

3. Restoring a .sav. This is really equivalent to #1 for variable definition
only, except the file to be included has actually been compiled.

Page 1 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20494#msg_20494
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20494
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20496#msg_20496
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20496
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

*Advantages: Loads more quickly than file includes. Variables are
pre-initialized.

*Disadvantages: Unlike method #1, only variables are set ... you can't run
arbitrary code. In order to update the variable data, you must redefine them
and then recompile the .sav, which is typically more difficult than recompiling
a routine (though perhaps not more difficult than recompiling many routines).
This need not even be a .sav file... any file (such as flat ascii) can be read
and parsed and variables assigned, but .sav's are somewhat more convenient (if
not portable among different programs), and preserve variable names simply.
Since you can't just peek in a .sav to see what variables it defines, you risk
variable name collision in routines which restore it. Restoring object
variables introduces a whole rash of subtleties (see previous postings on the
subject).

4. Common blocks.

* Advantages: RSI designed common blocks exactly for the case of sharing global
data. Common block variables can be both read and written to, and assigned
values of different size/type (unlike system variables). Shorthand allows you

to avoid explicitly mentioning each variable in a common block usage statement
(but see below).

* Disadvantages: Common blocks must be initialized and cannot be redefined

within a given session. The shortcut usage statement requires that the

declaring "common" statement (with all the variables listed) be *compiled*

before any routine invoking it. This compile-ordering restriction is similar to

the case for system variables in older versions of IDL. The only solution is

making each common block statement a declaring statement. This then makes adding
or deleting common block variables difficult, if its use is spread throughout

many routines/files. Combining with method #1 achieves single-point updates

(still for only one session), and solves the compile order issue.

Hope this helps clear things up.

JD

J.D. Smith "\ WORK: (607) 255-6263
Cornell University Dept. of Astronomy */ (607) 255-5842
304 Space Sciences Bldg. "\ FAX: (607) 255-5875
Ithaca, NY 14853 */

Subject: Re: include file?
Posted by R.G. Stockwell on Thu, 29 Jun 2000 07:00:00 GMT

Page 2 of 9 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3158
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

Stu <stu.c@freeuk.com> wrote in message news:395B0B0OC.COA5715D@freeuk.com...
Hi,

| have several different routines that all set up the same or slightlly
different constants etc at the beginning,

is it possible to have all the constants in one file, and have all my
functions/procedures reference this file

when they start? It would make for easier maintainence this way. How
would it be done? | can't see a

normal function or procedure doing the job as you would have to ask for
each constant explicitly, which is a

bit of a pain.

cheers,
Stu

VVVVVVVVVYVYVYVYVYV

You can make system variables in your startup.pro file
For instance, in mine | have the following:

DEFSYSV, 'limag’', complex(0,1)
DEFSYSYV, 'ltwopi', 2*!dpi

(this also avoids the problem of having common blocks,

where you may inadvertently confuse local and global variables
(artificially I guess, but the " ! " at the front of the name is

a good way to identify global variables))

Cheers,
bob stockwell

Subject: Re: include file?
Posted by promashkin on Thu, 29 Jun 2000 07:00:00 GMT

View Forum Message <> Reply to Message

| think that by far the easiest way is to define all your constants
interactively from command line (or from a routine) and save them into
IDL .sav file. Then, you can RESTORE that file from whatever routine you
want and use the contents of the .sav file in any way you want.

Cheers,

Pavel

Stu wrote:
>

Page 3 of 9 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20500#msg_20500
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20500
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20503#msg_20503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Hi,

| have several different routines that all set up the same or slightlly
different constants etc at the beginning,

is it possible to have all the constants in one file, and have all my
functions/procedures reference this file

when they start? It would make for easier maintainence this way. How
would it be done? | can't see a

normal function or procedure doing the job as you would have to ask for
each constant explicitly, which is a

bit of a pain.

cheers,
Stu

VVVVVVVYVYVYVYVYVYV

Subject: Re: include file?
Posted by John-David T. Smith on Thu, 29 Jun 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Stu wrote:

Hi,

| have several different routines that all set up the same or slightlly
different constants etc at the beginning,

is it possible to have all the constants in one file, and have all my
functions/procedures reference this file

when they start? It would make for easier maintainence this way. How
would it be done? | can't see a

normal function or procedure doing the job as you would have to ask for
each constant explicitly, which is a

bit of a pain.

cheers,
Stu

VVVVVVVVVYVYVYVYVYV

pro my_pro
@include_file

This mechanism is also very good for the (rare) time when a common block is
needed by a suite of routines with multiple possible entry points, requiring the
full variable in each "common" statement. Just be careful to keep track of
which variables you've introduced.

JD

J.D. Smith "\ WORK: (607) 255-6263
Cornell University Dept. of Astronomy */ (607) 255-5842

Page 4 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20506#msg_20506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

304 Space Sciences Bldg. "\ FAX: (607) 255-5875
Ithaca, NY 14853 */

Subject: Re: include file?
Posted by Robert Weiss on Thu, 29 Jun 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Hello,

what you are looking for are common blocks. Start the onlice documentation
and look up ‘common blocks' in the index. If you're familiar with
FORTRAN: the concept is quite the same.

Another possibility (one that | prefer because I'm always suspicious of
global variables) is to use a structure of constants (with pointers if the
the constants are larege arrays) and explicitly include the structure in

the call to your functions and procedures.

Hope that helps,
Robert.

P.S.: If it's physical constants your using it's most convenient to define
them in the idl_startup.pro file, sice you can then always refer to them
without problems (on a UNIX system it is the necessary to set the
environment variable IDL_STARTUP to this file, for WinDO$ and
MAC | dunno...).

Stu wrote:

Hi,

| have several different routines that all set up the same or slightlly
different constants etc at the beginning,

is it possible to have all the constants in one file, and have all my
functions/procedures reference this file

when they start? It would make for easier maintainence this way. How
would it be done? | can't see a

normal function or procedure doing the job as you would have to ask for
each constant explicitly, which is a

bit of a pain.

cheers,
Stu

VVVVVVVYVYVYVYVYVYV

Subject: Re: include file?

Page 5 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20508#msg_20508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20508
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by Steve Hartmann on Fri, 30 Jun 2000 07:00:00 GMT

View Forum Message <> Reply to Message

This topic has been explained very well with lots of good ideas (I've saved
J.D. Smith's message for future reference). | ran into a different type of
problem when | wanted to change some default program parameters of a
run-time application, such as the number and size of some display windows,
default directory locations, etc. | wanted to give the user the .sav

program file as well as a 'defaults’ file that the user could change as
desired. The problem is that a run-time application can not compile
anything, so | just put all the defaults in an ascii file and had the

application program open and parse the values. My defaults file is of the
form:

parameterl:valuel
parameter2:value2

and | just search for the parameter string and then read in the value for
that parameter. If it's not found, | load some default value.

| think this is an easy way to change the parameters, and probably the best
way to do it for a run-time application, especially for values that you
might want to change frequently.

-Steve Hartmann

Stu wrote:

Hi,

| have several different routines that all set up the same or slightlly
different constants etc at the beginning,

is it possible to have all the constants in one file, and have all my
functions/procedures reference this file

when they start? It would make for easier maintainence this way. How
would it be done? | can't see a

normal function or procedure doing the job as you would have to ask for
each constant explicitly, which is a

bit of a pain.

cheers,
Stu

VVVVVVVYVYVYVYVYVYV

Subject: Re: include file?
Posted by Martin Schultz on Fri, 30 Jun 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Page 6 of 9 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3458
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20486#msg_20486
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20486
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11918&goto=20491#msg_20491
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20491
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

"J.D. Smith" wrote:

As you can see from the various postings, there are a variety of ways to include
data "globally" to be shared among many routines, all of which | use in some
form. Each has it's strengths and weaknesses. In case people are confused by
which they should select, | thought I'd outline the various
advantages/disadvantages of each:

VVVVYVYVYV

This is very valuable. Thanks JD!

Just two additional comments that affect all three solutions to some
extent:

The problem is not as easy as asking "What is the best way to handle
globally
shared information?". It is important to consider the following aspects:
1.) do i know the number of variables and their type in advance?
2.) are the "constants" constant over one session, one project, or my
entire
career? (or until i get a new computer or the dept. a new server)
3.) do i need the same constants for all applications or would i like to
use
the same variables with different values in other applications (e.g.
path names and file names)

Furthermore, you have to decide whether you prefer a "once and for all"
approach or
a "quick and clean" solution. In my experience, both suffer from the
fact that, the
better they work, the more likely | am to forget how exactly | store my
information, so when it comes to the unavoidable event that | have to
change something, | need to start searching (this is a typical catch 22:
you write a program to eliminate the need to think about something, then
you find it more difficult to think about this when needed). Anyway: in
practice there are the solutions that JD gives us, and each of them
allows at least two levels of complexity: you can either store the data
directly
(in which case you fix the number of elements and their type), or you
can use
a structure which is stored as a pointer. This allows you to store
arbitrary data with one single "access point", and you can still change
things during runtime. The next (and final?) level of sophistication
would be some sort of container object which is initialized during setup
(from the startup file) and its reference stored in a global
variable. Then you would query the "constant" values e.g. as

e = IConstants->Get('e")
or

default_path = IConstants->Get('Default_Path")

Page 7 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

And you can add values, rename them, delete them, etc. Just don't forget
to deal with the case of undefined variables, i.e. don't forget a method
asking for the validity of an entry:

if not !Constants->IsValid('e") then ...

Cheers,
Martin

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

1. Variables in an include File (@filename)

* Advantages: Easy access to variables. Values can be initialized

within the file itself, and need no explicit initialization. Any arbitrary code

can execute, not just variable setting. This can be especially convenient when
used in concert with common blocks (see below).

* Disadvantages: Changes in the values cannot be shared among routines or
multiple calls to a single routine -- works best for read-only constants and/or
shared code segments. Updating the value requires recompiling each including
routine, or restarting the session.

2. System variables ('FOO).
* Advantages: Available everywhere for both reading and writing.

* Disadvantages: Difficulty setting -- IDL used to validate system variables at
compile time, which means you'd need to define them with "defsysv" *before* any
routine referencing them was compiled. At least with version 5.3, validity
checking is done at run time, eliminating this problem. Once a system variable

is defined, much like a named structure, it cannot be redefined with a different
data type or size in that session. Each system variable you define must be
initialized explicitly.

3. Restoring a .sav. This is really equivalent to #1 for variable definition
only, except the file to be included has actually been compiled.

*Advantages: Loads more quickly than file includes. Variables are
pre-initialized.

*Disadvantages: Unlike method #1, only variables are set ... you can't run
arbitrary code. In order to update the variable data, you must redefine them

and then recompile the .sav, which is typically more difficult than recompiling

a routine (though perhaps not more difficult than recompiling many routines).
This need not even be a .sav file... any file (such as flat ascii) can be read

and parsed and variables assigned, but .sav's are somewhat more convenient (if
not portable among different programs), and preserve variable names simply.
Since you can't just peek in a .sav to see what variables it defines, you risk

Page 8 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

variable name collision in routines which restore it. Restoring object
variables introduces a whole rash of subtleties (see previous postings on the
subject).

4. Common blocks.

* Advantages: RSI designed common blocks exactly for the case of sharing global
data. Common block variables can be both read and written to, and assigned
values of different size/type (unlike system variables). Shorthand allows you

to avoid explicitly mentioning each variable in a common block usage statement
(but see below).

* Disadvantages: Common blocks must be initialized and cannot be redefined

within a given session. The shortcut usage statement requires that the

declaring "common" statement (with all the variables listed) be *compiled*

before any routine invoking it. This compile-ordering restriction is similar to

the case for system variables in older versions of IDL. The only solution is

making each common block statement a declaring statement. This then makes adding
or deleting common block variables difficult, if its use is spread throughout

many routines/files. Combining with method #1 achieves single-point updates

(still for only one session), and solves the compile order issue.

Hope this helps clear things up.

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

JD

J.D. Smith "\ WORK: (607) 255-6263
Cornell University Dept. of Astronomy */ (607) 255-5842
304 Space Sciences Bldg. "\ FAX: (607) 255-5875
Ithaca, NY 14853 */

L

[[Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie [[

([Bundesstr. 55, 20146 Hamburg l
([phone: +49 40 41173-308 [l

[l fax: +49 40 41173-298 1

[[martin.schultz@dkrz.de [l

Lo teeeee

Page 9 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

