Subject: optimization question: a faster way to PIXMAP?
Posted by Dennis J. Boccippio on Thu, 13 Jul 2000 07:00:00 GMT

View Forum Message <> Reply to Message

A guestion for the IDL gurus:

- | have data in the form of irregular polygons, each polygon has
an associated value (let's call it an amplitude). | want a
composite image of the sum of all these polygons' amplitudes.

- My current approach is to :

(1) create a (large) WINDOW,../PIXMAP,
(2) render each polygon using POLYFILL
(3) TVRD() the pixmap window

(4) add this to an accumulation array

... iterate (1)-(4) until all polygons have been rendered

This works, but is painfully slow. Profiling the code shows that
by far the most significant logjam is the TVRD() of the pixmap.

So: does anyone know of more efficient ways to do this? Is the Z
device an option - it seems like it can be used for internal frame
storage, but would still have to be probed by TVRD()...?

Thanks,

Dennis

[T

_/ Dennis J. Boccippo |
_/ http://fly.hiwaay.net/~djboccip/Dennis.html N
[

Subject: Re: optimization question: a faster way to PIXMAP?
Posted by wrb1000 on Fri, 14 Jul 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Hi Dennis,

| actually encountered a different problem and am currently using the
solution that you hinted at. | read Randall's hint and | don't think

it applies to me as | am summing multiple samples of a waveform to
create a color-coded plot of a waveform. Here's a cut-and-paste of
some of the code | used. It's highly abbreviated, but will give you an

Page 1 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3588
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11962&goto=20579#msg_20579
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20579
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2889
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11962&goto=20675#msg_20675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

idea of have the Zbuffer works and will let you develop your own test
case. It aint super speedy (uses TVRD), but it works just fine.

intensity_array = uintarr(540, 459) ; image array
current_clip = !'P.CLIP ; Copy current clipping boundaries

set_plot, '2'

DEVICE, Z BUFFERING =0

device, set_resolution = [540,459]

IP.CLIP = current_clip ; Make Z-buffer clip same boundaries

; Setup new color table for Z-buffer image
table = intarr(256)

table[1] = 255

tvict, table, table, table

FOR i = <1st plot>, <2nd plot>, incr DO BEGIN
plots, x_data, y_data, color =1
intensity_array = temporary(intensity_array) + tvrd()
ENDFOR
device, /close
set_plot, 'win'
The 'intensity_array' now contains your summed data.

Hope this helps,

Bill B.

"They don't think it be like it is, but it do.”

Oscar Gamble, NY Yankees

Sent via Deja.com http://www.deja.com/
Before you buy.

Subject: Re: optimization question: a faster way to PIXMAP?
Posted by Dennis J. Boccippio on Sat, 15 Jul 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Thanks to both Randall and Bill for the tips...

I've found a temporary workaround which is only enabled by the fact that
my polygons are much smaller than the summation grid ... | allocate much

Page 2 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3588
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11962&goto=20667#msg_20667
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20667
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

smaller drawing windows, which tremendously speeds up TVRD(), and
accumulate them into the appropriate summation grid subarrays. However,
this is obviously case-specific, and doesn't solve the general problem

of full-image accumulation. (Indeed, once this kludge is implemented,

the initial PLOT used to set up each temporary frame's coordinate bounds
becomes the bottleneck... it seems the graphics functions are just
[relatively] slow).

Non-graphics and POLYFILLV sounds promising... will check that shortly.
Bill: I've benched your suggested code using both PIXMAP and the
Z-buffer. The Z-buffer (at least on a Mac) seems to win out

significantly:

Z_buf PIXMAP

main 95.72 151.45
tvrd 17.04 38.45
plots 14.07 49.95
randomu 1.38 1.34
sin 1.35 1.37
findgen 0.38 0.59

Surprising ... I'm curious how the guts of drawing to the Z-buf are
different from the guts of drawing to a PIXMAP...

- Dennis
Test code below:
pro testzbuf

intensity_array = uintarr(540, 459) ; image array
current_clip = !'P.CLIP ; Copy current clipping boundaries

set_plot, 'z’

DEVICE, Z_BUFFERING =0

device, set_resolution = [540,459]

IP.CLIP = current_clip ; Make Z-buffer clip same boundaries

; Setup new color table for Z-buffer image
table = intarr(256)

table[1] = 255

tvict, table, table, table

plot,1*!pi*findgen(1000)/1000,sin(4*!pi*findgen(1000)/1000) + $
randomu(seed,1000),color=1,/nodata

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

FOR i =0, 4000, 1 DO BEGIN
plots,1*!pi*findgen(1000)/1000,sin(4*!pi*findgen(1000)/1000) + $
randomu(seed,1000),color=1
intensity_array = temporary(intensity _array) + tvrd()
ENDFOR

device, /close
set_plot, 'mac’

end
pro testpixmap

set_plot,'mac’

intensity_array = uintarr(540, 459) ; image array

window,0,xsize=540,ysize=459,/pixmap

plot,1*!pi*findgen(1000)/1000,sin(4*!pi*findgen(1000)/1000) + $
randomu(seed,1000),color=1,/nodata

table = intarr(256)

table[1] = 255

tvict, table, table, table

FOR i =0, 4000, 1 DO BEGIN
plots,1*!pi*findgen(1000)/1000,sin(4*!pi*findgen(1000)/1000) + $
randomu(seed,1000),color=1
intensity_array = temporary(intensity_array) + tvrd()
ENDFOR

set_plot, 'mac’

end

Subject: Re: optimization question: a faster way to PIXMAP?
Posted by Dennis Boccippio on Mon, 17 Jul 2000 07:00:00 GMT

View Forum Message <> Reply to Message

In my actual (polygon-based) application, using the Z-buffer improved
significantly over the pixmap. Now that I've got a reasonably-working
algorithm, I'll experiment with POLYFILLV and post the results...

FWIW, | also found that using iterative calls to PLOT,/NODATA to set my
PIXMAP or Z-buffer coordinate bounds used a LOT of overhead. Directly
setting !'P.S and 'X.RANGE, 'Y.RANGE turned out (not surprisingly) to be
much more efficient...

Bless the 5.3 code profiler functionality!!! Between that and the
project manager, it's almost like using CodeWatrrior...

Page 4 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3600
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11962&goto=20639#msg_20639
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20639
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

DJB

In article <8kv3kgnnul@nnrpl.deja.com>, wrb1000@my-deja.com wrote:
Dennis,

Guessing - the pixmap function interacts with the video card.

Utilizing the Z-buffer, the process is probably just a local memory
allocation/deallocation exercise. Curious to learn the results of the

POLYFILLV exercise.

Bill B.

"They don't think it be like it is, but it do."

Oscar Gamble, NY Yankees

Sent via Deja.com http://www.deja.com/
Before you buy

VVVVVVVVVVYVYVVYVYVYVYV

Subject: Re: optimization question: a faster way to PIXMAP?
Posted by wrb1000 on Mon, 17 Jul 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Dennis,

Guessing - the pixmap function interacts with the video card.
Utilizing the Z-buffer, the process is probably just a local memory
allocation/deallocation exercise. Curious to learn the results of the
POLYFILLV exercise.

Bill B.

"They don't think it be like it is, but it do."

Oscar Gamble, NY Yankees

Sent via Deja.com http://www.deja.com/
Before you buy.

Page 5 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2889
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11962&goto=20658#msg_20658
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20658
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: optimization question: a faster way to PIXMAP?
Posted by Struan Gray on Tue, 18 Jul 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Dennis Boccippio, djboccip@hotmail.com writes:

> In my actual (polygon-based) application, using

> the Z-buffer improved significantly over the pixmap.

> Now that I've got a reasonably-working algorithm,

> ['ll experiment with POLYFILLV and post the results...

This is just idle musing on my part, but have you tried object
graphics? Plotting semi-transparent polygons successively offset
along the Z-axis towards the viewer should built up density in the
right way. You only need to read the pixmap at the end and you can
take advantage of the fact that OpenGL is optimised for fast polygon
plotting (and often accellerated to boot).

Struan

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11962&goto=20626#msg_20626
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=20626
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

